温度传感器论文(优秀8篇)

这次为您整理了温度传感器论文(优秀8篇),如果能帮助到您,小编的一切努力都是值得的。

温度传感器论文 篇1

关键词:STC89C51,多点温度测量,DS18B20

一、引言

在工农业生产和科学研究中,温度的测量和控制有着非常重要的作用和广泛的应用。目前国内外新型的温度传感器正向数字化、智能化、网络化的方向迅速发展。多路温度检测方法有很多,传统方法多以热敏电阻和热电偶等元件,但都存在可靠性差、精度低、接线复杂的缺点。,STC89C51。

本文提出利用美国Dallas公司生产的DS18B20数字温度传感器和STC89C51单片机构成的多路测温系统,采用单总线的接线方式,单根总线可以挂接多个传感器,该系统接线简便,体积小,非常适合用于工农业生产及科研中。

二、DS18B20简介

美国Dallas公司生产的 DS18B20可组网数字温度传感器芯片,具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。

DS18B20测量温度范围为-55℃至+125℃,-10℃至+85℃范围内精度为±0.5℃。DS18B20包含一个独特的序号,多个DS18B20可以同时存在于一条总线。,STC89C51。,STC89C51。这使得只利用单片机的一个I/O端口就可以读取多个温度传感器的测量数据,从而完成多点温度的测量。

三、多点温度测量系统设计

1、硬件设计

本设计中以STC89C51单片机为核心控制元件,以DS18B20为温度传感器组成多点温度测量系统,系统硬件电路图如图1所示。

图1 多点温度测量系统硬件电路图

2、软件设计

每一片DSl8B20在其 ROM 中都存有其唯一的48位序列号,在出厂前已写入片内 ROM中,主机在进入操作程序前必须逐一接入DSl8B20用读 ROM(33H)命令将该DS18B20的序列号读出并进行匹配。,STC89C51。

当主机需要对在同一总线的多个DSl8B20的某一个进行操作时,首先要发出匹配 ROM 命令(55H), 紧接着主机提供 64 位序列(包括该DSl8B20 的 48 位序列号) ,之后对每个DS18B20进行读取温度操作,把所读取的温度显示在液晶屏上。,STC89C51。让用户能实时、方便的观看每个点的温度。其软件流程图以及部分程序如下图所示。,STC89C51。

⑴软件流程设计

温度传感器论文 篇2

【关键词】AT89C52 蓄电池 DS18B20 通讯电路 Labview

温度是工农业生产,科学研究和生活领域中一个非常重要的物理参数,目前对温度的测量已有许多方法,可以将其分为两类:一种是传统的接触式测量通过原始的玻璃管,热电阻和热电偶等等;另一种是目前流行的非接触式测量通过红外测温。然而非接触式测温只在医学领域得到应用,其应用最广的还是传统的测温方法,随着信息技术的迅猛发展,属于信息技术的前沿尖端产品传感器也朝着单片集成化,智能网络化和单片系统化迅速发展,尤其是被广泛用于工农生产,科学研究和生活等领域的温度传感器,其数量和发展速度高居各传感器之首。本文将介绍由DALLAS公司生产的DS18B20数字温度传感器以及它的设计。

1 系统总体设计

本系统是基于单片机的对蓄电池的温度检测系统设计,由DS18B20温度传感器和A/D转换器TLC1549分别完成对温度和电压的检测,电源电路实现为单片机提供稳定的电压,同时。单片机对温度和电压信号的数据进行采集并处理,控制LCD显示器来显示采集的温度,如果检测到的温度超过了单片机设定的上限值或者下限值,那么与单片机相连接的声光报警电路就会发出报警信号。本系统采用了RS-232通讯标准,实现了与上位机的通讯,将采集到的温度电压信号传送到PC机上进行显示,做到简单明了化。蓄电池温度检测系统的总体设计方案如图1所示。

2 电路设计

2.1 DS18B20的接口电路

DS18B20是美国DALLAS半导体公司生产的可组网数字式温度传感器,它使用1-Wire(单线)接口,这种总线只需要一条I/0线进行数据传输,这种集成化的智能温度传感器与模拟传感器最大的区别是将温度信号直接转化成数字信号,然后通过串行通信方式输出。DS18B20具有微型化,低功耗,高性能,抗扰能力强,易于与微处理器接口等优点适合用于各种温度测控系统。

DS18B20与微处理器的连接有两种方式,可以采用寄生电源方式,其VCC和GND端均接地;也可采用如本图所示的外接电源方式,其中VCC端用+3V~+5.5V电源供电。

在本设计中我们采用的是外接电源的工作方式。利用单片机的P20-P25引脚与DS18B20相连接,其电路如图2所示。

2.2 电压检测电路设计

测量电路输出信号是模拟信号,要经过A/D转换才能送到单片机进行处理。TLCl549是串行方式输出数据,它与单片机的接口电路如图3所示。

单片机的P0.3口与I/O CLOCK输入相连,它来控制I/O时钟;P0.4口与A/D转换结果输出相连,它将A/D转换结构输入到单片机里;P0.5口选相连,它来控制A/D转换器的选通。

2.3 RS-232通讯电路

在本文研究的检测系统中,计算机与上位机的通信就是通过RS-232总线来完成的。MAX232需要4个电解电容C1、C2、C3、C4 ,是内部电源转换所需电容,其取值均为1μF/25V。宜选用钽电容并且应尽量靠近芯片,C5为0.1μF的去耦电容。单片机与MAX232的串行通信接口电路如图4所示。

3 软件程序设计

软件设计采用模块化的方法,主要有主程序、键盘扫描以及按键处理程序、温度检测程序、电压检测、液晶显示程序、温度报警程序。开始时首先开定时器中断T0和外部中断INT0,LCD显示基本的画面,紧接着采集温度和电压,然后判断各个标志位进行相应的函数调用。

3.1 温度检测程序设计

温度检测部分主要是由以下几个部分构成:单片机和温度采集部分。其中单片机部分我们采用的是AT89C51,它是整个检测系统的控制中心,我们将AT89C51的P2.0脚与DS18B20相连接,采用的是外接电源工作方式。温度检测的流程如图5所示。

3.2 电压检测程序

在芯片选择CS无效情况下,TLCl549的最初被禁止且DATA OUT处于高阻状态。当串行接口把CS拉至有效时,转换时序开始允许I/O CLOCK工作,并使DATA OUT脱离高阻状态,串行接口然后把I/O CLOCK序列提供给I/O CLOCK,并从DATA OUT接收前次转换的结果。I/O CLOCK从单片机接口接收长度在10和16个时钟之间的输入序列。开始10个I/O时钟提供采样模拟输入的控制时序。在CS下降沿前次转换的MSB出现在DATA OUT端。10位数据通过DATA OUT被发送到单片机的接口。为了开始转换,最少需要10个时钟脉冲。如果I/O CLOCK传送大于10个时钟长度,那么在10个时钟的下降沿内部逻辑把DATA OUT拉至低电平,以确保其余位的值为零。在正常进行的转换周期内,规定时间内CS端高电平至低电平的跳变可终止该周期,器件返回初始状态输出数据寄存器的内容保持为前次转换结果。A/D转换的程序流程图如图6所示。

3.3 液晶显示程序设计

向液晶控制器送数据,显示所测的和所设置的数据。在编程时需经历LCD初始化编程和LCD显示编程两个过程。在LCD初始化流程设计时,首先是上电复位,延时大于40s以后进行功能设定,所选用的是8位接口控制字和基本指令级,中间插入延时。接着打开显示设置,选择整体显示开,游标显示关和正常显示。然后清除屏幕显示,选择设定DDRAM的地址计数器为00H;更新设置进入设定点将I/D设为1和游标右移AC加1。最后进入设定点控制字,选择游标右移,地址计数器加1。

4 图形化编程语言LabVIEW

LabVIEW(Laboratory Virtual Instrument Engineering Workbench实验室虚拟仪器工程平台)是一种图形化的编程语言(G语言)。LabVIEW程序包括三部分:前面板、框图程序和图标/接口部件。前面板模拟真实仪器的前面板,用于设置输入数据和观察输出量。输入量称为Controls,输出量称为Indicators。用户可以使用多种图标,如旋钮、开关、按钮、图表、文本框、图形等,使前面板直观易懂。

与传统的文本式程序设计一样,LabVIEW也有控制流程图功能执行的部分,它们包括sequence、case statement、for loop、while loop结构,它们被图形化地描述成边界结构,像在传统的线形化程序设计中可以插入代码段一样,可以把图标放在LabVIEW图形结构的界限内部。

5 结论

论文主要研究内容是DS18B20温度传感器检测问题,对蓄电池环境温度和电压进行实时检测和报警的设计,在论文的最后引入液晶显示模块,将采集到的数据送到LCD上,并将检测到的数据跟设定的上下限值显示出来,做到一目了然。

参考文献

[1]李广弟等。单片机基础[M].北京航空航天出版社,2001.

[2]刘宝元等。基于单片机的温湿度监控系统设计[J].中国科技核心期刊,2009.12(3):4-6.

[3]王洪业。传感器技术[M].长沙:湖南科学技术出版社,1995.

[4]阎石编著。数字电子技术基础[M].北京:高等教育出版社,1998.

[5]刘君华。基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社,2003.

作者简介

李佳怡(1986-),女,吉林省吉林市人。硕士学位。现为吉林化工学院助教。研究方向为控制工程、控制理论与控制系统仿真。

温度传感器论文 篇3

关键词:进气温度传感器;进气压力传感器;测试

引言

目前控制发动机进气歧管的节气门上除了安装有节气门位置传感器外,通常还安装有进气温度和进气压力传感器。传感器主要由PCB板、传感元件、支架、密封圈、不锈钢衬套和壳体等组成[1]。进气温度传感器是以热敏电阻为检测元件的传感器,通常是负温度系数(NTC)传感器[2]。进气压力传感器的作用是根据发动机的负荷状态测出进气歧管内绝对压力的变化,并转换成电压信号输送到电控单元(ECU)中,作为决定电动喷油器基本喷油量的依据[3]。两个传感器输出的信号将和确定发动机各种工况下喷油量的精度有密切关系。因此常常要对这两种传感器进行测试。

这里设计了一套比较系统的方案,能够方便地解决这一问题。该套测试方法有如下几个优点:传感器无需移动,安装好之后就可以对两种参数进行测试,避免了频繁挪动过程中造成的各种误差;可以利用控制器实现对外界环境条件的控制调节,操作方便快捷;两种传感器共用同一设备,设备的利用率提高,减少了资源的浪费。

1 车用节气门传感器综合测试方法

现有进气温度传感器和进气压力传感器大多是整合在同一个封装里,统称为节气门传感器,安装在节气门体上。进行综合测试时将传感器安装在测试容器外表面上,利用控制器控制执行机构,改变容器内的压力、温度环境,测试传感器和标准传感器采集信号变化送入数据采集卡,数据信息最后送入控制器供实验人员调用分析。其测试系统原理图如图1所示。

测试系统的硬件结构主要由传感器部分、提供测试环境容器部分和控制部分组成。传感器部分有检测实际温度、压力的标准温度传感器、标准压力传感器。另外还有待检测的节气门传感器。容器部分为该测试方法提供了可变化的外界条件,包含了可布置各种传感器及阀门的容器、真空泵、冷却水容器、加热器等。控制部分主要由数据采集卡、控制器,及其电磁阀、泄压阀组成。该部分主要对三种传感器采集到的数据进行采集、处理,以供上位机分析,另外可以控制各种阀门的开闭,以实现对环境变化的人为控制。

对温度传感器进行检测、标定时,控制器开启电磁阀时,水泵开始工作,将冷却水容器中的冷水通过进水口送入试验容器中,当水量足够时,断开阀门停止向容器中注水。完成此项后控制加热器工作,使水温达到85℃左右,停止对容器加热。让容器中的热水慢慢从最高温度冷却到室温。标准温度传感器每隔一段时间采集水温的变化,而节气门传感器中的进气温度传感器则将得到对应的阻值的大小,这两组数据送入数据采集卡。对温度传感器检测完毕后,开启水流出口,将容器中的液体排尽。

对压力传感器进行检测标定,将容器的所有通道关闭,打开真空泵对容器做抽空气的处理,至容器接近真空状态。此时标准压力传感器采集到压力信号,节气门传感器中的进气压力传感器将得到相应的电压信号,同样也将这两组数据送入数据采集卡。接下来,保持真空泵处于运转状态,调节泄压阀的开度,使容器中的真空度发生一定的变化,等到容器中的压力值较为稳定后,继续采集此时的压力、电压的大小。如此往复,即可得到压力传感器的输出特性曲线。

2 测试方法的验证

由于实验设备有限,在这里我们采用两套系统分别对上述系统的准确性和可实施性进行了验证。验证实验中,对一部分设备进行了简化。

进气压力传感器测试验证如图2所示。

这里将标准压力传感器改换成了负压表,同样用来监测压力的变化。

测试过程:用真空泵对密封容器做抽空处理,读取负压表数值和万用表的电压值,控制容器泄压阀开度大小,继续测量多次,转换得到绝对气压和电压的关系如图3所示。

压力传感器的输出特性曲线决定了传感器在不同压力输出的电压值,是压力传感器最重要的特性。传感器能否和发动机ECU匹配也是和其输出特性密切相关的。传感器输出为Y=KX+B的K为斜率的直线[4]。从实测的MAP图电压随压力变化的曲线可以看出,随着压力的升高,电压值也相应增大,但由于各种误差的影响,因此最终实际得到的曲线并非是理想的直线。和图4的理论输出特性曲线相比较,走势吻合,能大致反应实际的电压和压力的变化趋势。

进气温度测验证试原理图如图5所示。

在这里使用温度计代替标准温度传感器监测温度变化情况,用热水棒对冷却水加热。测试过程:将容器中的水加热,使空气温度升高。读取温度计读数和万能表阻值,继续冷却,得到下一组值。如此重复,从而得到温度和阻值的关系如图6所示。

通过实验可知,随着温度的升高,热敏电阻的电阻值随之减小,并且减小的速率会放缓。在温度为60℃时,可能是由于环境变化引起的误差,使得局部变化有些异常,可以在数据分析的时候将此点忽略掉,因此是不影响整体的曲线走向的。和理论ATC输出特性如图7相比,基本吻合。

3 结束语

通过对车用节气门传感器综合测试方法的理论研究,以及相关的实验验证,最终可以达到使该测试系统变得简洁方便、提高设备的利用率的目的,为实际的系统平台的搭建提供了可实施的方案。虽然通过实验及采集的数据证明了方案的可行性,但是在实际的应用中,还会出现诸多实际问题:比如说传感器和各个部件在密封容器上的布置;传感器采样频率的设定等等。因此,这一些问题还需要在实际应用中再加以进一步完善。

参考文献

[1]蒋浩丰。进气歧管绝对压力和温度传感器的结构原理与检修[J].学习园地,2011(9):83-84.

[2]许佳云。进气温度传感器的识别与检修[J].科技风,2013(10):34.

[3]朱彩云。进气压力传感器输出特性及温度补偿分析[J].汽车电器, 2008(10):9-13.

温度传感器论文 篇4

【关键词】变压器;油温

1.引言

随着计算机和通信技术的快速发展,人们能够更加方便的得到信息,读取信息,这给人们生活带来了方方面面的变化,变压器作为是电力系统网络中重要的设备,它的发明为远距离配送电提供了重要保证。变压器使用的油是保证变压器减少老化的重要成分,油因为天气环境或者内部所含量发生了变化,油会出现多种变化,最后影响变压器的使用寿命。并且变压器经过长时间运行,产生许多问题跟油质有比较大的关系,变压器里充满了油,起着绝缘和冷却作用,通过对流循环保证变压器的各部分工作稳定,大部分变压器老化是由于热故障造成的,由于油引起的故障,也占一大方面,传统的人工方法观察,不太及时,智能信息处理现在发展很快,取得了很好的效果。最近几年传感器技术得到飞快发展,并且得到了许多成功的应用,温度传感器可以根据不同的温度选择不同标准的传感器,而且效果不错。通过分析变压器油路结构和变压器基本工作原理后,讨论利用设置温度传感器来进行多个变压器油温检测。对于变压器的油温进行测量,变压器参数都有一定的指标,如果超过或低于这个指标,温度过高会影响变压器的老化,油质变坏,变压器老化加快,利用传感器油温检测油温并传送到监控终端及时显示,便于分析[1]。所以研究使用传感器进行变压器油温温度检测具有重要意义。通常的信息处理方法步骤如图1所示。

先通过收集信息,然后把信息使用各种方法进行处理,最后通过计算机分析信息,再把分析的信息进行备份打印。

2.基本概念

2.1 变压器基本原理

变压器是一个静态的电气设备,根据电磁感应原理,变压器是在绕组之间的电路中来转换能量,当变压器一侧的绕组通过电流时,那么,就会产生磁场,在闭合的电路中产生一个变化的磁通量,使得在变压器中有变化的磁通量,通过这个变化的磁通量在次级线圈中产生变化的电动势,这样电路中就会有电流通过带动负载发热、发光。因此,变压器是电力系统中重要的电力装置[2]。

2.2 传感器测温基本原理

通常测温元件有压力温度计、热电偶、热电阻、热敏电阻。、压力式温度计根据压力和温度之间的变化来进行测量的,温度范围可达-100~600,它结构简单,具有防爆等特点。热电偶温度传感器基于塞贝克热电动势效应,是两种不同的导体两端构成回路,形成温差电动势而合成的。其测量温度可达-200~1600。热电阻基本原理是基于使用金属导体电阻值伴随着温度的改变来进行温度的测量,性能稳定、精度高、其测量温度,测量温度-200~500度。热敏电阻是由电阻值随着温度而显著变化的半导体电阻材料组成[3,4]。

3.变压器油温检测

变压器由铁芯、绕组、绝缘套管、分接开关、油箱、和冷却部分等组成,变压器的各部分之间起着相互绝缘的作用。变压器油起着绝缘和冷却作用,在变压器运行当中起着非常重要的作用,其基本来源是矿物油,里面含有许多化学成分,当与空气接触时,会被氧化,油作为矿物油有其许多化学性质,如、油的比重、粘度、凝固点、闪点、灰分、硫含量、油的颜色等。这些性质带给了油的不稳定性。当变压器正常工作一段时间后,变压器油的大部分性质会转化,油会变质,这样会严重影响变压器的工作状况,会加速变压器的老化,所以做及时的了解变压器的信息显得非常重要[5]。当变压器正常运行时,铁芯和绕组产生损耗使得其他部位温度升高,利用油的循环和对流把铁芯和绕组损耗而产生的热传递散热片,在传送到外面环境中,当散热与发热温度趋于平衡时,变压器温度处于稳定。传感器信息技术在军事、工业控制、医疗等多领域起着重要的作用,变压器油温温度升高对于变压器的使用寿命有着重要的影响,使用传感器获得检测信息,再通过通信线路传到电脑,利用计算机分析油温度升高的原因,再去做相应的处理。这样各部分的油温会清晰出现在计算机上。变压器油温检测在变压器使用年限中有着重要的作用,变压器的老化受到变压器油温的影响,根据变压器的组成结构和油循环情况和传感器基本原理,本文基本思想是使用传感器测量变压器的的油温,然后把采集的温度进行前后对比分析,获得精确的温度来进行判断变压器的异常情况。信息技术发展很快,变压器在高温下长时间运行,会减少变压器的使用寿命,绕组温度每升高8度,变压器使用年限缩短一半,想使得变压器其使用寿命延长,就必须保持油的温度在一定的温度内[6]。传感器油温检测结如图2所示。

多个变压器设置监测点,每个变压器油路上面有个测温传感器组成,利用传感器采集温度信息,再把温度信息进行处理传输,最后使用计算机来分析数据、备份数据。

4.展望

传感器检测技术在设备故障中有着重要的作用,变压器的油温检测一直也是研究的热点。通过油温的变化可以更好的了解变压器绕组和铁芯的温度变化情况,因为一旦变压器的油温升高时间过长,变压器的绝缘会很大程度上受损,变压器的绕组绝缘会被击穿,会使得绕组烧坏,变压器不能正常工作。所以需要对于变压器油温进行检测,利用一些新的方法来对于油温进行观察,还有通过无线的方法进行非接触式油温检测。在变压器使用检测方面有着一定好处。本文首先研究了计算机信息技术发展的现状,通过分析了传感器和变压器的基本结构原理,讨论了油温升高的影响因素,通过在变压器设置传感器进行测量,这样以便能更准确、更方便测出油温信息,通过这些信息来感知绕组信息,使用传感器采集再把采集的信息进行处理,这种方式对变压器油温检测会有大的提高。

参考文献

[1]董其国。电力变压器故障与诊断[M].北京:中国电力出版社,2001.

[2]国智文。配电变压器实用技术[M].北京:中国电力出版社,2011.

[3]张惠刚。变电站综合自动化原理与系统[M].北京:中国电力出版社,2004.

[4]郑华耀。检测技术[M].北京:机械工业出版社,2010.

[5]徐士高。变压器油问题[M].北京:电力工业出版社,1956.

[6](苏)布里亚诺夫(Б.П.Буръянов);董伯实译。变压器油[M].北京:电力工业出版社,1957.

作者简介:

温度传感器论文 篇5

关键词:单片机,温度传感器,远程监控与测量

1.研究的目的与意义

本研究以温度采集及转换,单片机处理和监控,无线传输为核心,可用于航空航天系统中,仓储温度监测及环境监测,矿井里的温度采集等。免费论文。快速方便并且可以实现远程采集,具有较高精确度,另外加有存储单元,可以对温度数据进行存储对比,以备不时之需。在该系统中还添加报警系统,自动提醒不正常温度,以免发生不必要的危险。由于采用ZigBee无线传输装置,可以远距离测温,因此可用于危险区域,例如:高压区,工厂,大型机器内部温测等,还可采集低温。另外还适用于家庭防火灾,火灾内部温度探测和温度监控,有助于灭火的开展和抢救人员和财产以及预测火势的发展等。

在现代社会中温度在航空航天,工业自动化、家用电器、环境保护和安全生产等方面都是最基本的监测参数之一,但是在某些环境下温度检测比较危险。因而需要一个智能检测和监测系统来代替危险的工作,本系统就可以很好的解决此问题,不仅可以实时的对温度进行远程检测监控,还可以在十分恶劣的环境下工作,测量结果精度高,并且对所测数据可以直接通过USB接口传给电脑存储或者直接存入外设存储单元,同时加报警装置,在温度不正常给予提醒,从而将损失减少到最低。为满足对温度记录的要求(高精度、自动控制、经济实用),系统实现了对现场环境温度的不间断测量与监控,让您通过监控中心可以直观看到温度实时变化,做到足不出户即可了解各被测点的温度。在那些需要对温度监控和测量的地方放置无线温度采集器,然后由监控中心通过软件对无线采集器进行控制,代替过去由人工来完成的温度数据采集任务;同时监控中心对无线温度采集器传输来的温度数据进行存储和查询统计。本系统使用方便,操作简捷,已经在许多领域中得到广泛的使用

2.国内外本项目的研究状况

温度在工业自动化、家用电器、环境保护和安全生产等方面都是最基本的监测参数之一,因此其检测装置也得到的长足的进步和发展。免费论文。例如美日生产的管缆热电阻温度传感器可测温度高达1000℃,精度0.5级,清华大学的“光纤黑体腔温度传感器”可在400~1300℃间灵敏度可达0.1℃。随着科技的进步和新材料的发现,新一代的温度传感器也在不断出现和完善,如利用核磁共振的温度检测器,可测量出千分之一开尔文,而且输出信号适于数字运算处理,在常温下可作为理想的标准温度。此外还有热噪声温度传感器、激光温度传感器等诸多发展。智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),它在硬件的基础上通过软件来实现测试功能。目前,国际上已开发出多种智能温度传感器系列产品。如由美国DALLAS半导体公司新研制的DS1624型高分辨力智能温度传感器,能输出13位二进制数据,其分辨力高达0.03125°C,测温精度为±0.2°C。此外新型智能温度传感器的功能也在不断增强。例如,DS1629型单线智能温度传感器增加了实时日历时钟(RTC),使其功能更加完善。DS1624还增加了存储功能,利用芯片内部256字节的E2PROM存储器,可存储用户的短信息。免费论文。另外,智能温度传感器正从单通道向多通道的方向发展,这就为研制和开发多路温度测控系统创造了良好条件。

无线传输技术ZigBee是在工业自动化、家庭智能化和遥控监测领域对无线通讯和数据传输的需求日益增长的情况下应运而生的,它采用IEEE802.15.4协议,具有功耗低,成本低等特点,还可以方便的实现自动移动的AdHoc网络。目前市场上的RF芯片供应商主要还是TI、EMBER、FREESCAIE及JENNIC,国产厂商在这个方面仍然是空白。鉴于ZigBee技术在功耗、组网技术等方面的出色能力,受到各国政府、军方、科研机构和跨国公司的广泛关注和高度重视,随着其技术的发展,无线传感器网络将会逐渐的深入生活的每个方面。

3.无线网络温度采集可以实现如下功能

(一)数字信号通过单片机分析处理,通过ZigBee无线传输模块,可实现无线传输功能。(二)接收模块得到的数字信号通过单片机处理,可在LCD FC12864上可进行当前温度显示,可实现数字显示功能。(三)外部存储单元可对过去温度进行存储,以便随时调用,可实现存储功能。(四)由于有无线传输,可以实现远程对温度进行监控和测量 存储,安全可靠,而且速度快精度高。(五)系统实现了对现场环境的不间断温度测量与监控,让您通过监控中心可以直观看到温度实时变化,做到足不出户即可了解各被测点的温度。在那些需要对温度监控和测量的地方放置无线温度采集器,然后由监代替过去由人工来完成的温度数据采集任务;同时监控中心对无线温度采集器传输来的温度数据进行存储和查询统计。(六)该系统可换部分装置,然后实现其它功能,例如:将温度传感器换成湿度传感器进行湿度采集等,具有很强的移植性。

4.结语

在当代社会科学技术的迅猛发展以及人类对自然的不断深入探索下,一些人类无法立足的恶劣环境以及相关工业、煤矿业、石油业、存储业等相关环境中的重要温度数据的采集和控制成为科学研究的重要课题。本研究项目以适应相关条件下的温度传感器为依托,以单片机为整个系统的处理和监控为核心,当需要采集人类无法立足的恶劣环境中的重要温度数据时,本系统可以通过媒介放置一体积小、精度高的温度传感器去采集;在生产和存储环境中可以通过本系统来监测温度,当超过合适的环境温度时,发出警报,通知工作人员及时处理控制温度以减少损失。本研究项目可以更好的服务于科研,提高生产效率,降低危险事故发生的几率,具有很强的现实意义

参考文献:

1.闫德立、刘展威。ZigBee技术优势及其在现代企业生产中的应用[J].河北企业,2009.08.

2.乐嘉华。温度检测技术的现状和未来[J].炼油化工自动化。

3.孙俊杰。 ZigBee应用向商业化逼近[J]. 电子设计应用,2007.11.

4. 张培仁,张志坚,高修峰。 十六位单片微处理器原理及应用(第一版)[M].北京:清华大学出版社,2005.5,P18-P52,P60-P63,P130-P163,P226-P260,P280-P286.

5.李勋,林广艳,卢景山。单片微型计算机大学读本(第一版)[M].北京:北京航空航天大学出版社,1998.11,P197-P203.

6.吴国凤。C语言程序设计教程(第一版)[M].合肥:中国科技大学出版社,2003.2,P36-P60,P88-P115.

7.Horstmann.c著,晏海华等译。 C++核心思想:第三版[M]. 北京:电子工业出版社, 2004.8 .

8.宋育才。 MCS-51系列单片微型计算机及其应用[M]. 南京:东南大学出版社 ,1997.3.

9.智能温度传感器的趋势[DB/ol].

10..LCD12864中文资料手册。

温度传感器论文 篇6

关键词:半导体 温度传感器

一、温度传感器原理

温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是最早开发,应用最广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。在半导体技术的支持下,相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。

1、接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。

2、非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。

二、智能温度传感器发展的新趋势

进入21世纪后,智能温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。

1、提高测温精度和分辨力 在20世纪90年代中期最早推出的智能温度传感器,采用的是8位A/D转换器,其测温精度较低,分辨力只能达到1℃。目前,国外已相继推出多种高精度、高分辨力的智能温度传感器,所用的是9~12位A/D转换器,分辨力一般可达0.5~0.0625℃。

2、增加测试功能 新型智能温度传感器的测试功能也在不断增强。智能温度传感器正从单通道向多通道的方向发展,这就为研制和开发多路温度测控系统创造了良好条件。智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D转换速率,分辨力及最大转换时间。 智能温度控制器是在智能温度传感器的基础上发展而成的。

3、可靠性及安全性设计 传统的A/D转换器大多采用积分式或逐次比较式转换技术,其噪声容限低,抑制混叠噪声及量化噪声的能力比较差。新型智能温度传感器普遍采用了高性能的Σ-Δ式A/D转换器,它能以很高的采样速率和很低的采样分辨力将模拟信号转换成数字信号,再利用过采样、噪声整形和数字滤波技术,来提高有效分辨力。Σ-Δ式A/D转换器不仅能滤除量化噪声,而且对元件的精度要求低。

三、半导体温度传感器测温原理及其关键技术

硅基IC电路中,可实现温度传感功能的元器件主要有集成电阻器、二极管、双极晶体管、MOS晶体管。当然,还有各种利用MEMS工艺制造的热敏电阻器、热电偶等,但目前基本上还与CMOS工艺不兼容。

1、双极晶体管温度传感器

二极管的电流包括扩散电流和耗尽层、表面层里的产生复合电流,后者在双极晶体管的基极互相抵消,所以,正向偏置的双极晶体管的集电极电流IC基本上都是纯扩散电流,若利用高精度电流源,令2个匹配晶体管的集电极电流相同,ΔVBE将和绝对温度成正比。但这样得到的温度电压曲线起点是绝对零度,对于-50~150℃的测温范围,电压输出不是0~5V,对于后端A/D来说,需要额外的电平移动电路。通过构造Vf=aVptat-VBE1和Vref=VBE1+aVptat可以得到任意的过零点TZ以及几乎不随温度变化的恒压源。采用BJT的优点是低成本、长期稳定性、高灵敏度、可预测性较高,以及相关温度的时间非依赖性。缺点是受自生成熟、工艺容差的影响,以及热循环后信号有小漂移和小数量级的非线性。为了工艺兼容,需要采用寄生三极管技术实现,主要有2种结构:纵向双极晶体管,横向双极晶体管。

2、CMOS温度传感器

利用CMOS构建温度传感器一般有2种途径。其一是利用MOS管的亚阈值区构造MOS管的PTAT,灵敏度可达1.32mV/℃,但对偏置源的依赖有100mV/V,且高温下会产生漏电,因对阈值电压VT依赖大,在高性能要求时,必须有大范围的微调和校准,不具备长期稳定性;另一途径是通过强反型状态下,MOS管的载流子迁移率μ与VT和温度的关系加以测量。基于此有5种设计方案:即只基于μ随温度的改变;只基于VT随温度的改变;同时考虑VT和μ2个变量;利用MOS器件的零温度系数点,以及利用逻辑门延时随温度增加的原理来构建的数字环振。CMOS温度传感器和基于寄生BJT的温度传感器相比的主要优势在于模型精确,受封装影响小,在AC电源下衬底漏电小,且占用芯片面积小等优势,但其主要的缺点是受工艺波动的影响要大于后者,所以,产业界目前仍普遍采用CVBT技术。

3、半导体温度传感器

输出方式采用模拟输出的温度传感器需要外加线性化电路及校准,因此,会使成本增加。而数字化接口或频率输出能使性能更可靠,即使在量产时仍能保持其精确度。频率输出通常采用的方法是做一个环形振荡器或张驰振荡器。前者会受VDD变化的影响,而后者理论上与VDD无关。两者都基于相同的原理,通过对电容器的充放电产生振荡,充放电电流来源于某个温度敏感元件。为了数字接口输出,有通过片上计数器实现,其主要缺点是面积大;另一种方案是采用片上集成A/D,然后,通过I2C等总线协议输出。

结论

温度传感器市场在不断变化的创新之中呈现出快速增长的趋势。该领域的主要技术将在现有基础上予以延伸和提高,随着新一代温度传感器的开发和产业化,竞争也将变得日益激烈。

参考文献

缪家鼎, 徐文娟, 牟同升。 光电技术。 杭州: 浙江大学出版社

温度传感器论文 篇7

关键词:HMP45D,温湿度传感器,原理,维护

引言

HMP45D温湿度传感器是芬兰VAISALA公司开发的具有HUMICAP技术的新一代聚合物薄膜电容传感器,目前大连周水子国际机场空管气象部门已投入业务运行的自动气象站[1],均采用该传感器。论文范文,。由于该传感器的测量部分总是要和空气中的灰尘和化学物质接触,从而使传感器在某些环境中产生漂移。论文范文,。而仪器的电气参数会随时间的推移、温度变化及机械冲击产生变化,因此传感器需要进行定期维护和校准。

1.HMP45D温湿度传感器的结构

HMP45D温湿度传感器应安装在其中心点离地面1.5米处。其中,温度传感器是铂电阻温度传感器,湿度传感器是湿敏电容湿度传感器[2],即HMP45D是将铂电阻温度传感器与湿敏电容湿度传感器制作成为一体的温湿度传感器,如图1所示。

图1 HMP45D温湿度传感器外型图

2.HMP45D温湿度传感器的工作原理

2.1 温度传感器工作原理

HMP45D温湿度传感器的测温元件是铂电阻传感器Pt100,其结构如图2。铂电阻温度传

感器是利用其电阻随温度变化的原理制成的。标准铂电阻的复现可达万分之几摄氏度的精确度,在-259.34~+630.74范围内可作为标准仪器。铂电阻材料具有如下特点:温度系数较大,即灵敏度较大;电阻率交大,易于绕制高阻值的元件;性能稳定,材料易于提纯;测温精度高,复现性好[3]。

图2 铂电阻温度传感器结构图

由于铂电阻具有阻值随温度改变的特性,所以自动气象站中采集器是利用四线制恒流源供电方式及线性化电路,将传感器电阻值的变化转化为电压值的变化对温度进行测量[4]。铂电阻在0℃时的电阻值R0是100Ω,以0℃作为基点温度,在温度t时的电阻值Rt为

(1)

式中:α,β为系数,经标定可以求出其值。由恒流源提供恒定电流I0流经铂电阻Rt,电压I0Rt通过电压引线传送给测量电路,只要测量电路的输入阻抗足够大,流经引线的电流将非常小,引线的电阻影响可忽略不计。所以,自动气象站温度传感器电缆的长短与阻值大小对测量值的影响可忽略不计。论文范文,。测量电压的电路采用A/D转换器方式。

2.2 湿度传感器工作原理

HMP45D温湿度传感器的测湿元件是HUMICIP180高分子薄膜型湿敏电容,湿敏电容具有感湿特性的电介质,其介电常数随相对湿度的变化而变化,从而完成对湿度的测量。湿敏电容主要由湿敏电容和转换电路两部分组成,其结构如图3所示。它由上电极(upper electrode)、湿敏材料即高分子薄膜(thin-film polymer)、下电极(lower electrode)、玻璃衬底(glass substrate)几部分组成。

图3 湿敏电容传感器结构图

湿敏电容传感器上电极是一层多孔膜,能透过水汽;下电极为一对电极,引线由下电极引出;基板是玻璃。整个传感器由两个小电容器串联组成。湿敏材料是一种高分子聚合物,它的介电常数随着环境的相对湿度变化而变化。当环境湿度发生变化时,湿敏元件的电容量随之发生改变,即当相对湿度增大时,湿敏电容量随之增大,反之减小,电容量通常在48~56pF。传感器的转换电路把湿敏电容变化量转换成电压量变化,对应于湿度0~100%RH的变化,传感器的输出呈0~1V的线性变化。由此,可以通过湿敏电容湿度传感器测得相对湿度。

3.HMP45D温湿度传感器的校准和维护

对HMP45D 传感器的维护,要注意定期清洁,对于温度传感器测量时要保证Pt100 铂电阻表面及管脚的清洁干燥。论文范文,。在清洗铂电阻时一定要将湿度传感器取下,使用酒精或异丙酮进行清洗。其具体步凑如下:

1) 旋开探头处黑色过滤器,过滤器内有一层薄薄的白色过滤网,旋出过滤网,用干净的小毛刷刷去过滤网上的灰尘,然后用蒸馏水分别将它们清洗干净。

2) 等保护罩和滤纸完全风干之后,将其安装到传感器上。然后再将传感器通过外转接盒连接到采集器上,再和湿度标准传感器一起放入恒湿盐湿度发生器进行对比。恒湿盐容器的温湿参数[4]如表1。

表1HMP45D校准前后数据对比

温度传感器论文 篇8

关键词:

光纤光栅; 温度传感; 热惯量; 封装

中图分类号: O 436.1文献标识码: Adoi: 10.3969/j.issn.10055630.2013.05.002

引言

处于热力学平衡状态的所有物质,第零定理[1]认为存在某一共同的宏观物理性质(即:温度)。常见的测量温度的装置有水银温度计、热电偶、红外热像仪等。热惯量是度量物质热惯性大小的物理量[2],对于热惯量较大的热力学系统,不同温度计测温时,平衡温度与热力学系统的待测温度相差不大,因而常将平衡时温度计显示的温度当作热力学系统的待测温度。而对于热惯量较小的热力学系统,用水银温度计或热电偶等对温度进行直接测量时,传感器与被测系统间进行热交换,所测温度是传感器与被测系统达到热力学平衡后的温度。而采用红外热像仪、光谱测温法、激光干涉测温法[3]等对温度进行间接测量时,虽有较大的测量范围,但测量精度有限。光纤光栅已被用来对温度进行测量[45],其热惯量小、灵敏度高、响应时间短、动态范围宽,已引起人们的广泛关注[6],但很少有人关注其对被测热力学系统温度影响程度。

本文利用不同类型温度传感器对小热惯量温度场进行直接测量,分析和实验均表明,所测结果不同,其中管式封装的光纤光栅(fiber Bragg grating,FBG)温度传感器,测量精度高,响应速度快。论文内容有益于准确获取小热惯量热力学系统的温度值,还有益于FBG温度传感器性能的提高。

2光纤光栅温度传感实验

2.1用不同的温度传感器测温

所用裸光栅的长度为1 cm,它是利用紫外侧写技术,写入Corning SMF28光纤的,其直径为0.125 mm;水银温度计的长度为1.5 cm,外径为3.6 mm;K型热电偶的感温部分长2 cm,外径0.8 mm。一试管中盛有初始温度相同的2 ml纯净水,用上述温度传感器分别测试其水温,FBG传感器通过可调FabryPerot滤波器光纤光栅解调系统[8]读取结果,系统扫描频率1 000 Hz,室温下波长稳定性在5 pm以内;热电偶测量结果通过万用表读取,分辨率0.1 ℃;温度计最小刻度值为0.1 ℃,人工肉眼读取。观察不同温度传感装置所测结果的差异。

环境温度为26 ℃。为防止空气对流和传感器放置位置不同而对实验结果造成影响,将试管口用软木塞堵住,软木塞中央开有与传感头外径大小相匹配的孔,传感头穿过孔置入待测水中。

将三只试管通过水浴法将纯净水加热至沸腾(实验室环境下纯净水沸腾温度为99.5 ℃),放入传感器的同时撤去热源,记录传感器显示的温度随时间的变化关系,见图1所示。

裸光栅温度传感器体积小,石英材质的导热系数和密度都小,传感器与被测热力学系统间热交换至热力学平衡后的温度最接近被测物的真实温度。在相同实验环境下减少纯净水体积至1 ml,三种温度传感器的测量值为98.5 ℃、93.8 ℃、92 ℃,测量相对误差为0.90%、5.72%、7.54%。被测物热容量减少时,传感器测量误差增大。

响应时间取传感器测量值达到峰值90%时的时间。从图1所示的响应曲线中获得三种温度传感器的响应时间。不同传感器的响应时间用不同颜色的竖直虚线标示。光纤光栅传感器、热电偶、水银温度计的响应时间分别为2.2 s、8.5 s、10 s。响应时间受传感器进入被测物时间与计时时间不同步的影响。

2.2金属管封装光纤光栅传感器与裸光栅传感器对比实验

考虑裸光栅温度传感器的传感结果易受外界因素的影响,精确测量时需要对其适当封装。金属管封装是常见的封装形式,有必要用实验考察封装对传感结果的影响。对于小热惯量温度场,选用裸光栅和同轴封装的光纤光栅温度传感器[910],后者所用金属管外径0.45 mm,封装中注意对温度进行增敏而对应变的作用不敏感。实验环境与第一组实验保持一致,记录传感器测得的温度变化曲线如图2所示。

金属管封装的光纤光栅温度传感器测得最高温度为98.6 ℃,传感器响应时间为2.5 s;裸光纤光栅温度传感器测得最高温度为98.9 ℃,传感器响应时间为2.2 s。

可见,裸光栅传感器测量精确高,系统达到热平衡时间短。下面来考察同质材料封装时,封装尺寸对传感结果的影响。

用直径分别为0.45 mm、0.90 mm和2.00 mm不锈钢管对裸光栅进行封装后,分别用来测定小热惯量温度场的温度随时间变化关系。各自的温度随时间变化关系曲线如图3所示。

封装直径0.45 mm的温度传感器测得最高温度为98.6 ℃,传感器响应时间为2.5 s;封装直径0.90 mm的温度传感器测得最高温度为98.1 ℃,传感器响应时间为2.9 s;封装直径2.00 mm的温度传感器测得最高温度为97.2 ℃,传感器响应时间为4.2 s。

对于同质封装材料,但管壁厚薄不同的传感器,用来对小热惯量场进行温度测量,发现管壁越薄的传感器,其响应时间短,所测温度更准确。

综上所述,传感头的热惯量越小,用来测小热惯量热力学系统时的测量精度更高,响应时间更短。

3结论

实验表明,监测小热惯量温度场温度实时变化情况,相比于水银温度计、热电偶等,裸光栅温度传感器的测量精度高,响应速度快。封装虽可有效保护传感光栅,但以牺牲传感精度和增加响应时间为代价。

参考文献:

[1]马本,高尚惠,孙煜。热力学与统计物理学[M].北京:高等教育出版社,1980:5-7.

[2]孙家柄。遥感原理与应用[M].武汉:武汉大学出版社,2009:14-16.

[3]倪震楚,袁宏永,疏学明。现代温度测量技术概述[J].消防理论研究,2003,22(4):270-272.

[4]禹大宽,乔学光,贾振安。应用在油气管线的光纤光栅温度压力传感器系统[J].激光技术,2007,31(1):12-14.

[5]付建伟,肖立志,张元中。油气井永久性光纤传感器的应用及其进展[J].地球物理学进展,2004,19(3):515-523.

[6]ZHANG W H,TONG Z R,MIAO Y P.Sensing and demodulation technique based on titled fiber bragg grating[J].Nanotechnology and Precision Engineering,2008,6(4):284-287.

[7]余有龙。光纤光栅传感器及其网络化技术[M].哈尔滨:黑龙江科学技术出版社,2003:112-115.

[8]王浩,余有龙,王雪微。光纤可调FP滤波器频率响应特性的实验研究[J].光学仪器,2012,34(6):67-70.

一键复制全文保存为WORD
相关文章