无论是身处学校还是步入社会,大家总少不了接触论文吧,论文是我们对某个问题进行深入研究的文章。那么一般论文是怎么写的呢?
建模是一种重要的数学思想,是数学认知活动的重要内容。一切数学概念、公式与定理以及各种议程等等,都可 在数学认知活动中,教师要注重引导学生通过分析、猜想、提取与概括等来自主地构建数学模型。这样,学生不仅能够深刻地理解与掌握基本的数学知识,更为重要的是可以掌握建模这一重要数学思想,从而有利于学生知识与素养的全面提升。让学生学会建模这是小学数学教学的重要课题。笔者现结合具体的教学实践对数学建模策略浅谈如下几点体会。
一、激发兴趣,趣味教学
兴趣是一切认知活动的基础,是教学成功的秘诀。只有激起学生对认知对象浓厚的兴趣,学生才能产生积极的学习行为,把学习当做一种精神上的享受,这样才能取得事半功倍的效果,而且还可以让学生养成良好的学习习惯,形成持久的学习兴趣。因此,培养学生建模能力的一个有效策略就是要激发学生对数学学科兴趣,对建模的热情。因此在具体的教学中,要避免无视学生学情的照本宣科,而是要将数学学习与现实生活结合起来,以学生所熟悉的生活事物与生活实例来引入新知,渗透建模思想,这样可以大大增强教学的亲切感与形象性,自然可以激起学生参与的激情与思考的积极性。如在学习加法交换律时,教师就可以以朝三暮四的成语故事来引入,将原本抽象的理论知识寓于富有趣味的生活故事之中,这样可以避免以往机械的讲述, 实现寓教于乐,自然就可以激起学生强烈的`学习热情与学习动机,从而引导学生展开主动而快乐的学习。
二、巧妙设问,主动探究
学起于思,思源于疑。疑问是思维的开端, 创新的基石, 是打开学生探究之门的钥匙。在建模教学中同样如此, 一个巧妙的问题,不仅可以激发学生的学习热情,诱发学生探究动机,还可以将学生的思维引向深处,从而使学生的探究更有深度与广度, 在学生的积极思考与主动探究来圆满地完成教学任务。为此在教学中,要尽量避免没有悬念的教学,而是要善于运用提问艺术,抛出富有启发性与探索性的问题,一石激起千层浪,这样更能引导学生展开主动探究。如在学习平均数时,我首先让学生思考,班内两个小组参加学校的比赛,其中第一小组5个人,第二小组8个人, 哪个小组的水平高一些呢? 这样的问题与学生的现实生活密切相关, 与教学内容紧密相连,具有很强的趣味性与针对性,更能引发学生的学习热情与主动思考。通过思考后,学生提出了一些解决方法,比较总分的高低,看最高分在哪个小组等。但随后学生又发现这些方法存在一定的局限性, 并不能客观反映各小组的实际情况。学生初步建模失败,此时就需要教师因势利导,给予必要的启发与诱导,进而引入平均数的建模,这样就可以实现学生的有效探究, 更加利于学生对此知识点的本质性理解。
三、深入本质,深化理解
学生的认知规律是由形象到抽象再到形象,这一特点决定了在学生建模的过程中,要加强引导,深入本质。如植树问题是小学数学教学的一个重点也是难点, 而要突出重点突破难点,就必须要让学生深入本质的理解,这样学生才能灵活地加以运用, 才能掌握数学建模这一重要的数学思想。经过师生之间的互动探究得出不封闭路的植树棵数=间隔数+1后,再次提出问题引导学生思考:(1)道路长度是100米,每隔5米种1棵树,有多少个间隔?可以种多少棵树? (2)如果间隔数是30个,可种多少棵树? 间隔数是n个, 可种多少棵树?(3)如果路的长度改变,而其他条件不变,植树棵数=间隔数+1这个公式是否成立? (4)思考为什么植树棵数不等于间隔数而是等于间隔数+1? 这样的几个问题层层递进,由特殊到一般,由抽象到弄错,步步深入,可以将学生的认知由形象引向抽象再到形象, 从而达到学生对知识的深刻理解与灵活掌握, 亲历数学建模全过程, 实现对这一基本数学思想的真正内化。
四、回归生活,提升能力
数学学科源于生活,同时又服务于生活,与生活有着千丝万缕的联系。这一学科特征决定了在数学建模教学中不仅要重视从现实生活中来提炼与抽象出数学模型,同时还要注重将数学模型运用于生活实践中,回归生活,指导实践,这样才能真正实现学以致用,促进学生数学素养与能力的整体提高。如关于植树问题,在学生抽象出数学模型,总结出公式以后,为了提升学生的认知,促进学生将知识转化为能力,我们还要引导学生能够运用抽象出的模型来解决现实问题。如广场上的大钟6点敲响6下,所用时间是10秒,那么12点时敲响l2下所用的时间是多少? 这样将学生所总结出的模型运用于现实生活问题的解决之中,将学生思维的全过程展现出来。这样就可以避免学生对模型的机械套用,而是遵循了学生从现实生活提取数学素材抽象出数学模型再到将数学模型还原于具体的生活问题。这样更能加深学生对数学模型的理解与认知,使学生已经建立的数学模型得以不断扩展与延伸,才能促进学生对模型的内化,实现学生的真正理解与灵活运用,提升学生的能力;更为重要的是可以让学生真切地感受到数学建模的实用性与必要性,促进学生掌握建模这一最基本、最重要的数学思想。
总之,数学建模是数学学习的重要方法,这是新课改的必要要求, 是数学学科学习的内在规律, 同时也是由学生学习特点所决定的。在具体的教学中,教师要重视培养学生数学建模能力,不断增强学生的应用意识,让学生亲身参与到概念与定理的形成过程中,提高学生分析问题与解决问题的能力, 激活学生的思维,激励学生创新,从而让学生在主动思考与探究中来掌握建模这一重要数学思想与方法,促进学生数学知识、素养与综合能力的整体提高。
摘 要:随着经济的快速发展,我国的科学技术也得到了长足的进步,在计算机应用方面,从对计算机技术尚存新鲜感到运用成熟,可以说有了质的飞跃。在日常生活以及技术操作当中,计算机已经融入其中,广泛地应用于各行各业,笔者以数学建模为例,分析了数学建模与计算机应用之间的关系,与此同时,也探寻了计算机应用技术在数学建模的辅助之下发挥的作用,并对数学建模进行概念定义,使得读者能够对数学建模的意义有着更深层次的了解,希望能够起到促进二者之间的良性发展。
关键词:数学建模;计算机技术;计算机应用
随着经济的快速发展,我国的科学技术也有了长足的进步,而与之密不可分的数学学科也有着不可小觑的进步,与此同时,数学学科的延伸领域从物理等逐渐扩展到环境、人口、社会、经济范围,使得其作用力逐渐增强。不仅如此,数学学科由原本的研究事物的性质分析逐渐转变到研究定量性质范围,促进了多方面多层次的发展,由此可见,数学学科的重要性质。在日常生活中,运用数学学科去解决实际问题时,首要完成的就是从复杂的事物中找到普遍的`规律现象存在,并用最为清晰的数字、符号、公式等将潜在的信息表达出来,再运用计算机技术加以呈现,形成人们所要完成的结果。笔者以数学建模为例,分析了数学建模与计算机应用之间的关系,与此同时,也探寻了计算机应用技术在数学建模的辅助之下发挥的作用,并对数学建模进行概念定义,使得读者能够对数学建模的意义有着更深层次的了解,希望能够起到促进二者之间的良性发展。
1 数学建模的特质
从宏观角度上来讲,数学建模是更侧重于实际研究方面,并不仅仅是通过数字演示来完成事物的一般发展规律,与一般的理论研究截然不同。其研究范围之广,能够深入到各个领域当中,从任何一个相关领域中都能够找到数学学科的发展轨迹,从中不难看出数学学科的实际意义与鲜明特点。数学为一门注重实际问题研究的学科,这一性质方向决定了其研究的层次,其研究范围大到漫无边际的宇宙,小到对于个体微生物或者单细胞物体,综合性之强形成了研究范围广的特点。多个学科之间互相影响,从中找到互相之间存在的相互联系,其中有许多不能够被忽视的数学元素,且这些元素都是至关重要的,所以这个计算过程十分复杂,计算量与数据验算过程也十分耗费时间,因此需要充足的存储空间支持这一过程的运行。在数学建模的过程当中,所涉猎的数学算法并不是很简单,而建立的模型也遵循个人习惯,因此建成的模型也不是一成不变的,但是都能够得出相同的答案。 正因如此,在数学建模的过程当中,就需要使用各种辅助工具来完成这一过程。由于计算机软件具有的高速运转空间,使得计算机技术应用于数学学科的建模过程当中,与数学建模过程密不可分息息相关。由此可见,计算机技术的应用水平对于数学学科的重要作用。
2 数学建模与计算机技术之间的联系
2。1 计算机的独特性与数学建模的实际性特点 计算机的独特性与数学建模的实际性特点,使得二者之间有着密不可分的联系,正是因为这种联系使得双方都能够有长足的发展,在技术上是起着互相促进的作用。计算机的广泛应用为数学建模提供了较为便利的服务,在使用过程当中,数学建模也能够起到完成对计算机技术的促进,能够在这一过程中形成更为便捷高速的使用方法与途径,使得计算机技术应用更为灵活,也可以说数学建模为计算机技术的实际应用提供了更为广阔的应用空间,从中不难发现,数学建模对于计算机应用技术的支持性。计算机应用技术需要合成的是多方面的技术支持,而数学建模则是需要首要完成的,二者之间是相互影响共同促进的作用。
2。2 计算机为数学建模提供了重要的技术支持 数学建模对于计算机应用技术的重要的指导意义与作用。第一点,计算机在其技术的支持之下,有着大量的存储空间能够完成存储资料的这一过程,许多重要资料在计算机技术的保护之下,存储时间较为长久,且保护力度较大,不容易被破坏及减少了不必要的人力以及物力;第二点,计算机是多媒体的一个分支,运用其成熟的互联网思维技术,能够完成数学建模从平面到空间的转化,能够提供更为成熟的模拟环境,从而提高实践的效率。由于数学建模过程的复杂化及对于实际问题的研究方向的特质,使得对于各项技术的要求就很高,所以,需要涉及的操作与数据量非常大,过程也十分复杂,常见的过程有三维打印、三维激光扫描等。这些都是需要计算机技术的支持才能够完成的,所以对于计算机技术的要求非常高,与此同时,计算机应用技术为数学建模提供了更为便捷、快速的解决方案与途径。
2。3 数学建模为计算机的发展提供了基石 计算机的产生起源于数学建模的过程,在二十世纪八十年代,由于导弹在飞行时的运行轨迹的计算量过大,人工无法满足这一高速率的运算条件,基于这一背景条件,产生了计算机,计算机应用技术由此拉开了序幕。数学建模的过程是需要计算机来完成的,在全部的过程当中,计算机参与计算的比重很大,从某种意义程度上来讲,计算机技术对于数学建模的发展是起着推动性的作用的,二者之间是有着联系的。
前言
创新人才的培养是新的时代对高等教育提出的新要求。培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力。
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1]。
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养。尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力。
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践。
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效。数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2]。
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程。数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程。
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3—7]。
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点。现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中总结的几点看法。
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法。
用数学语言进行交流和良好的符号意识是重要的数学素质。数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的。能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式。数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征。
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型。通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决。
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、抽象思维、逻辑推理和表达能力,提高学生的数学素质和数学能力。在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强。在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力。
而在学生的书面作业或论文报告中,注意培养学生数学语言表达的规范性。书面表达是数学语言表达能力的一种重要形式。通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成。在书面表达上,主要应做到思维清晰、叙述简洁、书写规范。例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范。
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正。
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的'教师队伍。由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力。
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程。优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍。实验课的地位要给予应有的重视。我院现存的一个重要表现就是实验设备不足,实验室开放时间不够。为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室。
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备。精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神。在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计。要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则。
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解。熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化创新思维的开发。
教学方法上实行启发参与式教学法:启发—参与—诱导—提高。充分发挥学生主体作用,以学生亲自动脑动手为主。
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高。数学实验是一门强调实践、强调应用的课程。
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程。在这一教学活动中,通过数学软件如MAT—LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程。
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力。
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者。
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力。
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力。一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标。数学建模与数学实验课程通过实际问题——方法与分析——范例——软件——实验——综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法。
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法。通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养。实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用。
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提。再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣。
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显。基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决。在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范。对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正。
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺。只有不断的学习和总结,才有数学素养的培养和创新能力的提高。
参考文献:
[1]叶其孝。把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J]。工程数学学报,20xx,(8):1—11。
[2]颜荣芳,张贵仓,李永祥。现代信息技术支持的数学建模创新教育[J]。电化教育研究,20xx,(3)。
[3]郑毓信。数学方法论的理论与实践[M]。广西教育出版社,20xx。
[4]姜启源。数学实验与数学建模[J]。数学的实践与认识,20xx,(5):613—617。
[5]姜启源,谢金星,叶俊。数学建模[M]。第3版。北京:高等教育出版社,20xx。
[6]周家全,陈功平。论数学建模教学活动与数学素质的培养[J]。中山大学学报,20xx,(4):79—80。
[7]付桐林。数学建模教学与创新能力培养[J]。教育导刊,20xx,(08):89—90。
数学概念教学中有效提问的量化研究
大、中学数学教学衔接问题的研究综述
高中数学课程标准下选修课“数学史选讲”教学研究
普通高中数学课程标准与教学大纲课程编制的对比研究
新课标下大学概率统计教学与中学数学教学内容的衔接探讨
让数学文化走进课堂
高中学生数学建模能力与数学学业成绩关系的调查与分析
高等数学与新课标下高中数学教学内容对接的研究
高一数学教学中如何解决好初高中衔接问题
浅析高中数学生成性课堂的构建策略
论数学文化视角下的中学数学课堂教学
高等数学与高中数学衔接改革的研究
高考数学应用题的特点与启示
数学课程发展的趋势与思考
浅议向量在高考数学中的'应用
实施分组分层教学,提高课堂教学效率
培养反思思维习惯 促进创新能力提高
数学归纳法在几何教学中的应用
提高高中数学教学质量的措施探讨
研究性学习的实施策略与实践
向量在立体几何中的应用
新课标体系下高中数学对大学工科数学教学产生的问题分析及对策探索
高中新课标下的高等数学教学内容改革
浅谈高中数学导学案教学中存在的问题及对策
高中数学教育现状分析及探讨
合理使用几何画板带领学生进入数学微观世界
高等数学和新课标下中学数学的脱节与衔接问题的研究与探索
高中数学教材中的数学史对大学数学教学的启示
浅谈数学教学中的抽象概括能力
浅谈一般数列的求和问题
青年教师怎样在研究课例中成长
立足课堂教学 提高学生的数学能力——以柯西不等式一课教学为例
双互动四统一教学范式在数学归纳法教学中的运用
影响高中生数学解题的心理因素探究
空间向量在立体几何中的运用
函数思想在解题中的应用
有效利用几何画板 促进数学课堂教学
影响高中学生数学成绩的原因及解决办法
探析高中数学如何培养学生健康的心理素质
高等数学教学对高职新生的适应性研究
提升高中数学多媒体辅助教学效率的思考
多媒体技术条件下高中数学教学有效性探究
数学教学中运用多媒体技术的优势和不足
巧用“学案导学”模式,提升学生数学解题能力
浅谈高中数学教学的几点体会
将几何画板有效融入高中数学日常教学——《曲线与方程》的教学实践与思考
及时用好电脑软件 克服惧怕数学心理——以高中数学回归分析为例
小构造 再求导 大智慧——例谈“二次求导”在函数问题中的应用
探究新时期特色高中数学教育教学
情感教育的渗透在高中数学教学中的作用研究
推广数学建模教学促进高中基础教育改革
高中数学课程教学改革探讨
“学案探究”模式在高中数学教学中的应用
浅谈高中数学研究性学习