作为一位兢兢业业的人民教师,时常需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。教案应该怎么写才好呢?
第一章分式
1、分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2、分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3、整数指数幂的加减乘除法
4、分式方程及其解法
第二章反比例函数
1、反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1、平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析
加权平均数、中位数、众数、极差、方差
三年级下册数学学习方法
回顾和把握平时的困难,注意检查错误,填补空白,合理解决问题。
在实践中,我们要抓住一个难题。我省高考数学考试的难度在0.65左右,如果命题的方向不偏颇,大多数学生都能减少当前问题的难度。对于优等生,要提高难度,灵活运用知识,深入分析问题,提高解决问题的能力。在平时,练习的次数应该适度控制,以前做过的问题应该被发现,特别是容易出错的知识点。我们应该再看一遍,把概念搞清楚,这样才能减少类似问题再犯错误的可能性。有两个重要的问题,一个是战略,另一个是技能。高考就像战争一样,在战略上要轻视敌人,在战术上要重视敌人。在策略上,学生应该建立信心。毕竟复习时间已经够长了,应该掌握知识,这样答案才能立于不败之地。就技巧而言,回答问题比回答问题容易。在试卷中,难度一般是分散的:选择题的难度在后面,填空的。难度也是一样的。大问题一般可以在前面或两个做,在后面的大问题中,一两个小问题是比较容易解决的。当你回答一个问题时,你必须先解决这些问题。当你遇到麻烦时,不要花太多时间。只要放弃,做一些简单的事情,专注于突破。考试时间比较紧,要分配合理的答题时间。当然,这会因人而异。中产阶层应该把重心往前移动,在前面选择,填的时间越多,问题越大,有的由前面的问题比较简单,就能拿到积分来把握。优等生要在掌握问题速度的前提下,在适当的重心转移的前提下解决问题。
三年级下册数学学习技巧
学会看题
高中比初中有更多的相关材料。高考是全社会关注的问题。因此,在高中的实践尤其多,一些学生购买更多的材料。因此,如何利用主题来掌握我们学习的知识,扩大我们所学的知识是学习的关键。我认为我们应该看更多的话题,更多的思考,看看解决材料中问题的方法,思考方法中的原因,这样我们就可以从更多的方法中学习。
有很多方法来消化它们。因此,我们将不得不选择去做这个问题,用一半的努力达到两倍的结果。我建议每天练习一次,每周做一组完整的试题,看2到3组试题,从中找出这段时间数学学习的关键知识,这些是我们常用来解决问题的方法,以及可以用来优化解题的方法。
课后巩固
很多学生在课后的学习过程中不注重巩固,只是觉得课堂上的一些知识就足够了,其实这是错误的。高中数学知识丰富,不像初中数学那么简单,却有着丰富的内涵。如果它不能进一步挖掘,那么它只是掌握这些知识的表面。因此,我不知道如何理解,也不能使用这些知识时,我做我的练习。
做练习是必要的,但有些学生只是做练习,而不是巩固这些知识,把知识扩展到做练习,经常是在练习完成后完成练习。这和中学问题没有什么区别。事实上,我们也应该把在这个练习中使用的知识联系起来,这样我们才能理解正在使用的知识,并且能够掌握更多的知识。也可以发现知识点是关键,也可以发现如何链接相关知识的难题。
分数的初步认识
1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、比较大小的方法:
①分子相同,分母小的分数反而大,分母大的分数反而小。
②分母相同,分子大的分数就大,分子小的分数就小。
4、分数加减法:
①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。
②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。
5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
6、求一个数是另一个数的几分之几是多少的`计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)
测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
3、在计算长度时,只有相同的长度单位才能相加减。
4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,
②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里
5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
6、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克
多项式定义
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。
对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式�
数学知识点
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的。绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
1、认识整千数(记忆:10个一千是一万)
2、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的。数大。
②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。
的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、公式被减数=减数+差
和=加数+另一个加数
减数=被减数-差
加数=和-另一个加数
差=被减数-减数
位置与方向
1、①(东与西)相对,(南与北)相对,
(东南—西北)相对,(西南—东北)相对。
②清楚以谁为标准来判断位置。
③理解位置是相对的,不是绝对的。
2、地图通常是按(上北、下南、左西、右东)来绘制的。
(做题时先标出北南西东。)
3、会看简单的路线图,会描述行走路线。
一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。
4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
5、生活中的`方位知识:
①北斗星永远在北方。
②影子与太阳的方向相对。
③早上太阳在东方,中午在南方,傍晚在西方。
④风向与物体倾斜的方向相反。
(刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)
除数是一位数的除法
1、除数是一位数的除法计算方法:从被除数的位除起,先看被除数的位,如果不够除,就看前两位,除到被除数的哪一位就把商写在哪一位的上面,余数要比除数小。
2、没有余数时:被除数=商×除数。有余数时:被除数=商×除数+余数。
3、“0”不能做除数,做除数没有意义,0除以任何不是0的数都得0。
4、想:商中间有0的除法,在什么情况下商中间才有0?
商末尾有0的除法,在什么情况下商末尾才有0?
特殊统计图:
当数据比较大而且各个数据间的差距比较小的时候,为了反映这组数据的差异性,我们用起始格表示比较大的数量,而其他格表示较小的数量的统计图,我们称之为“特殊统计图”。
1、分析统计图时首先要清楚横轴和纵轴各表示什么,每格代表多少。
2、平均数=总数量÷总份数。
3、平均数能较好地反映一组数据的总体情况。
4、在计算平均数之前,要注意先估一估平均数的范围应该大约是多少,然后再进行计算,在算各个数据的总和时,应注意算2次以上以保证计算结果的准确性。
小学三年级上册数学知识点:认识分数
1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。
2、分母越大,分数单位越小,的分数单位是1/2
3、举例说明一个分数的意义:3/7表示把单位“1”平均分成7份,表示这样的3份。还表示把3平均分成7份,表示这样的1份。3/7吨表示把1吨平均分成7份,表示这样的3份。还表示把3吨平均分成7份,表示这样的1份。
4、4米的1/5和1米的4/5同样长。
5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。
7、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。
8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)
10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。
11、把分数化成小数的方法:用分数的分子除以分母。
12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……
13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。
15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。
16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。
17、分数大小比较的应用题:工作效率大的快,工作时间小的快。
18、求一个数是(占)另一个数的几分之几,用除法列算式计算。
小学三年级上册数学知识点:24时计时法
1、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。
如:普通计时法24时计时法:上午9时→9时;晚上9时→21时(9+12=21)普通计时法一定要加上“上午”、“下午”等前缀。
2、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】
①如:火车11:00出发,21:30到达,火车运行时间是(经过10小时30分钟),但这里不要写成(10:30)。正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。
②再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时);
③又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。
3、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。
小学三年级上册数学知识点:两位数乘两位数
1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。
2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
3、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)
4、有大约字样的一般要估算。
5、凡是问够不够,能不能等的'题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。
6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。
7、相关公式:因数×因数=积积÷因数=另一个因数运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。
小学三年级上册数学知识点:除数是一位数的除法
1、只要是平均分就用(除法)计算。
2、除数是一位数的竖式除法法则:
(1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。
(2)除到被除数的哪一位,就把商写在那一位上。
(3)每求出一位商,余下的数必须比除数小。
顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。
3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)
4、笔算除法:
(1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;
的被除数=商×除数+的余数;
最小的被除数=商×除数+1;
(2)除法验算:→用乘法
没有余数的除法有余数的除法
被除数÷除数=商被除数÷除数=商余数
商×除数=被除数商×除数+余数=被除数
被除数÷商=除数(被除数-余数)÷商=除数
0除以任何不是0的数(0不能为除数)都等于0;
0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。
5、笔算除法顺序:确定商的位数,试商,检查,验算。
6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)
7、多位数除以一位数(判断商是几位数):
用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。
小学三年级上册数学知识点:年、月、日
1、认识年、月、日。认识平年和闰年。
2、记忆大小月的方法
3、一年分四个季度:1、2、3月第一季度;
4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;
5、普通记时法与24时记时法的转换。
6、简单的经过时间的计算方法。认识年、月、日1。1年有12个月。
7、大月:有31天的月份是大月。大月有1月、3月、5月、7月、8月、10月、12月。
8、小月:有30天的月份是大月。小月有4月、6月、9月、11月。
9、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。
10、一年分四个季度:1、2、3月第一季度;4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;
平年和闰年
1、平年:2月有28天的月份是平年,平年有365天。
2、闰年:2月有29天的月份是平年,平年有365天。
3、平年和闰年的判断方法:一般情况下,公历年份除以4没有余数的是闰年,公历年份是整百数的,必须除以400没有余数才是闰年。
一、学习目标:
1.认识长度单位毫米,建立1毫米的长度概念,会用毫米厘米度量比较短的物体的长度;
2.较透彻地理解万以内笔算加法的计算法则,并能应用法则准确地计算两位数连续进位的加法题;
3.初步认识四边形,了解四边形的特点,并能根据四边形的特点对四边形进行分类;
4.知道有余数除法的含义,体会有余数出发的实际背景;
5.认识时间单位“秒”,知道1分=60秒;会进行一些时间的简单计算;初步建立时、分、秒的时间观念,养成遵守和爱惜时间的意识和习惯;
6.掌握一位数乘整十、整百、整千数的口算方法,会进行相应的口算;知道一位数乘整十、整百、整千数的简便算法;
7.初步认识几分之一,会读会写几分之一,能比较分子是1的分数大小;
8.理解一位数乘整十数的口算法。
二、学习难点:
1.认识时间单位时、分、秒,知道1分=60秒,会一些有关时间的简单计算;
2.知道有余数的除法的含义,来自生活中;
3.根据四边形的`特点对四边形进行分类;
4.哪一位上的数相加满十,要向前一位进1,而且在前一位上的数相加时,要记得加上进上来的1;
5.认识长度单位毫米,会用毫米度量物体长度。
三、知识点概括总结:
1.毫米:毫米是长度单位和降雨量单位,英文缩写mm。
1毫米=0.1厘米=0.01分米=0.001米=0.000001千米
2.厘米:是一个长度计量单位,等于一米的百分之一。长度单位,符号为cm.,1厘米=1/100米。
1厘米=10毫米=0.1分米=0.01米=0.00001千米
3.分米:是长度的公制单位之一,1分米相当于1米的十分之一。
0.0001千米(km)=1分米
0.1米(m)=1分米
10厘米(cm)=1分米
100毫米(mm)=1分米
4.千米:千米又称公里,是长度单位,通常用于衡量两地之间的距离。是一个国际标准长度计量单位,符号km。
1千米(公里)=1,000米(公尺)=100,000厘米(公分)=1,000,000毫米(公厘)
5.吨:质量单位,公制一吨等于1000公斤。
6.加法:基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。
表达加法的符号为加号(+)。
进行加法时以加号将各项连接起来,把和放在等号(=)之后,例:1、2和3之和是6,就写成︰1+2+3=6.
加法各部分名称:“+”是加号,加号前面和后面的数是加数,“=”是等于号,等于号后面的数是和。
例:100(加数)+(加号)300(加数)=(等于号)400(和)
加法性质:(1)加法交换律:a+b=b+a
(2)加法结合律:a+b+c=a+(b+c)
7.减法:四则运算之一,将一个数或量从另一个数或量中减去的运算叫做减法。
已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。
减法的性质:减去一个数,等于加这个数的相反数。
8.验算:算题算好以后,再通过逆运算(如减法算题用加法,除法算题用乘法)演算一遍,检验以前运算的结果是否正确。
验算的作用:验算能够有效地检查出计算过程中出现的错误,但对解题思维上的错误无太大用处,通过验算(用结果来推导条件)所得的数据与原数据比较来建议运算是否正确。
9.四边形:由不在同一直线上四条线段依次首尾相接围成的封闭的立体图形叫四边形。由凸四边形和凹四边形组成。
10.平行四边形:两组对边分别平行的四边形叫做平行四边形。
11.周长:环绕有限面积的区域边缘的长度积分,叫做周长,图形一周的长度,就是图形的周长。周长的长度因此亦相等于图形所有边的和。
12.估计:根据情况,对事物的性质、数量、变化等做大概的推断。
13.余数:在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,取余数运算:1.指整数除法中被除数未被除尽部分。
例:27除以6,商数为4,余数为3.
余数的性质:余数有如下一些重要性质(a,b,c均为自然数):
(1)余数小于除数;
(2)被除数=除数×商+余数。
除数=(被除数-余数)÷商;
商=(被除数-余数)÷除数;
余数=被除数-除数×商。
14.秒:时间单位时间单位秒(second)是国际单位制中时间的基本单位,符号是s。
15.分:时间单位,等于1/60小时,或60秒。
16.乘法:将相同的数加法起来的快捷方式。其运算结果称为积。
乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)
18.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。
分子在上分母在下,也可以把它当做除法来看,用分子除以分母,相反乘法也可
19.分数线、分子、分母:分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。
分数可以表述成一个除法算式:如二分之一等于1除以2,其中,1分子等于被除数,分数线等于除号,2分母等于除数,而0.5分数值则等于商。
20.分数由来:分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,像7/3就是一种新的数,我们把它叫做分数。
21.可能性:可能性是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。
小学三年级数学《除法》知识点
(一)口算除法
1、整千、整百、整十数除以一位数的口算方法。
(1)用表内除法计算:先用被除数0前面的数除以一位数,算出结果后,再看被除数的末尾有几个0,就在算出的结果后添几个0。
(2)用乘法来算除法:看一位数乘多少等于被除数,乘的数就是所求的商。
2、三位数除以一位数的估算方法。
(1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。
(2)想口诀估算:想一位数乘几最接近或等于被除数的位或前两位,那么几百或几十就是所要估算的商。
(二)笔算除法
1、牢固掌握两位数除以一位数、三位数除以一位数的笔算方法、步骤与格式,尤其是商中间、末尾有0的笔算算式的写法。
(除数是一位数的计算法则,除数是一位数,从被除数的高位除起,先除被除数的前一位,如果不够除,再除被除数的前两位,除到被除数的哪一位,商就写到被除数那一位的上面。除到被除数的哪一位不够商1,用“0”占位。每一次除得的余数必须比除数小。)
2、会判断商是几位数。
比较除数与被除数位的大小,如果被除数位上的数比除数小,那么商一定比被除数少一位;如果被除数位上的数比除数大或相等,那么商和被除数的位数相等。
3、除法的验算方法:
(1)没有余数的除法:商×除数=被除数;
(2)有余数的除法:商×除数+余数=被除数;
4、关于0的一些规定:
(1)0不能作除数。
(2)相同的两个数相除商是1。(既然能相除这个数就不是0)
(3)0除以任何不是0的数都得0;0乘任何数都得0。
5、乘除法的估算:4舍5入法。
如乘法估算:81×68≈5600,就是把81估成80,68估成70,80乘70得5600。
除法估算:493÷8≈60,就是把493估成480(480是8的倍数,也最接进492),然后再口算480÷8得60。
小学三年级数学《吨的认识》知识点
含义:
计量很重的物品或大宗物品的质量,通常用吨做单位,吨用符号t表示。
举例:1袋大米约重10千克,100袋大米约重1000千克,也就是1吨。
单位换算:
1吨=1000千克
2吨=2000千克
方法分析:
1吨=1000千克,2吨是2个1吨,就是2个1000千克,是2000千克,即2吨=2000千克。
方法归纳:
把较大的质量单位换算成相邻的较小的质量单位时,就是在所换算数的末尾添上3个0,把较小的质量单位换算成相邻的较大的质量单位时,就是在所换算数的末尾去掉3个0。
生活中吨的应用:
吨的确是个比千克重的多的单位,那么,在计量较重的或大宗物品的质量时,通常用吨作单位?例如“一列货车每节车厢的载重量是50吨,一般一辆货车大约有30—50节车厢,也就是说可以运送200吨左右的货物。实际上,生活中很多物品的质量是用吨来作单位的'。比如:嫦娥一号起飞重量为2。35吨;空集装箱本身的重量在2吨—5吨;亚洲象平均重3—4吨,非洲象平均五到六吨左右等等。
小学三年级上册数学《测量》知识点
1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
量比较长的物体,常用米(m)做单位。
量比较长的路程一般用千米(km)做单位。
2、运动场的跑道,通常1圈是400米,2圈半是1000米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。
4、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。
5、1厘米中间的每一小格的长度是1毫米。
6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。
7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
8、常用长度单位:米、分米、厘米、毫米、千米。
9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10。
1米=10分米,1分米=10厘米,1厘米=10毫米
1米=100厘米
1千米(公里)=1000米
10、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000。
1吨=1000千克
1千克=1000克