高中数学课程一直是高考的必考科目,占有很高的教学地位。高中数学一直是理科生眼中比较难的一门学科,其实高中数学有许多易混淆知识点,下面是小编为大家精心推荐高中数学最易混淆的一些知识点,希望能够对大家有所帮助。
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.
2.在应用条件时,易A忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别.
6.求解与函数有关的问题易忽略定义域优先的原则.
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法
11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
19.绝对值不等式的解法及其几何意义是什么?
20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.
23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.
24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
33.反正弦、反余弦、反正切函数的取值范围分别是
34.你还记得某些特殊角的三角函数值吗?
35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
36.函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.
(3)点的平移公式:点按向量平移到点,则.
37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38.形如的周期都是,但的周期为。
39.正弦定理时易忘比值还等于2R.
一:集合
考点1:集合的基本运算
考点2:集合之间的关系
二:函数
考点3:函数及其表示
考点4:函数的基本性质
考点5:一次函数与二次函数.
考点6:指数与指数函数
考点7:对数与对数函数
考点8:幂函数
考点9:函数的图像
考点10:函数的值域与最值
考点11:函数的应用
三:立体几何初步
考点12:空间几何体的结构、三视图和直视图
考点13:空间几何体的表面积和体积
考点14:点、线、面的位置关系
考点15:直线、平面平行的性质与判定
考点16:直线、平面垂直的判定及其性质
考点17:空间中的角
考点18:空间向量
四:直线与圆
考点19:直线方程和两条直线的关系
考点20:圆的方程
考点21:直线与圆、圆与圆的位置关系
五:算法初步与框图
考点22:算法初步与框图
六:三角函数
考点23:任意角的三角函数、同三角函数和诱导公式
考点24:三角函数的图像和性质
考点25:三角函数的最值与综合运用
考点26:三角恒等变换
考点27:解三角形
七:平面向量
考点28:平面向量的概念与运算
考点29:向量的运用
八:数列
考点30:数列的概念及其表示
考点31:等差数列
考点32:等比数列
考点33:数列的综合运用
九:不等式
考点34:不等关系与不等式
考点35:不等式的解法
考点36:线性规划
考点37:不等式的综合运用
十:计数原理
考点38:排列与组合
考点39:二项式定理
十一:概率与统计
考点40:古典概型与几何概型
考点41:概率
考点42:统计与统计案例
十二:常用逻辑用语
考点43:简单逻辑
考点44:充分条件与必要条件
十三:圆锥曲线
考点45:椭圆
考点46:双曲线
考点47:抛物线
考点48:直线与圆锥曲线的位置关系
考点49:圆锥曲线方程
考点50:圆锥曲线的综合问题
十四:导数及其应用
考点51:导数与积分
考点52:导数的应用
十五:推理与证明
考点53:合情推理与演绎推理
考点54:直接证明与间接证明
考点55:数学归纳法
十六:数系的扩充与复数的引入
考点56:数系的扩充与复数的引入
十七:选考内容
考点57:几何证明选讲
考点58:坐标系与参数方程
考点59:不等式选讲
1、课前预习:首先上课前要做预习,课前预习能提前了解将要学习的知识。
2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的都是精华部分。
3、课后复习:通预习一样,也是行之有效的方法。
4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。
5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。
6、建立纠错本:把经常出错的题目集中在一起。
7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。
8、培养学习兴趣:兴趣是最好的老师,只有有了兴趣才会自主自发的进行学习,学习效率才会提高。
高中数学最易混淆知识点相关文章:
1.高中数学最易混淆知识点
2.高考数学最易混淆知识点及大题解题方法
3.高中数学容易混淆的知识点归纳总结
4.高考数学易混淆知识点总结精华版
5.高考数学易混淆知识点
6.数学不会看了却懂,怎么办
7.高考数学重点难点详解
8.数学高二八大答题公式
9.秋季高中数学新教材变化之处和12个答题模板
10.高考数学参数方程必考知识点