八年级上册数学教学计划(优秀7篇)

人生天地之间,若白驹过隙,忽然而已,前方等待着我们的是新的机遇和挑战,现在的你想必不是在做计划,就是在准备做计划吧。什么样的计划才是好的计划呢?问渠那得清如许,为有源头活水来,本文是漂亮的编辑为家人们整理的八年级上册数学教学计划(优秀7篇),仅供参考,希望对大家有所帮助。

八年级上册数学教学计划 篇1

一、指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。

我校七年级下学期学生期末考试的成绩平均分不是很好,总体来看,成绩很低。在学生所学知识的掌握程度上,整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。

在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。

学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

三、教材分析

第十一章全等三角形

主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十二章轴对称

立足于生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十三章实数

主要介绍了平方根、算术平方根、立方根实数的概念。理解乘方与开方之间是互为逆运算的关系。了解无理数和实数的概念,知道实数和数轴上的点一一对应。能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的`运算,会用计算器进行实数的运算。

第十四章一次函数

通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十五章整式

在形式上力求突出:整式及整式运算产生的实际背景————使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程————为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握————设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

四、教学措施

1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素养。

5、教学中注重自主学习、合作学习、探究学习。

八年级上册数学教学计划 篇2

一、教学目标

(一)知识目标

1.会用计算器求平方根和立方根。

2.经历运用计算器探求数学规律的活动,发展合情推理的能力。

(二)能力训练目标

1.鼓励学生能积极参与数学学习活动,对数学有好奇心与求知欲。

2.鼓励学生自己探索计算器的用法,并能熟悉用法。

3.能用计算器探索有关规律的问题,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

(三)情感与价值观目标

让学生经历运用计算器的活动,培养学生探索规律的能力,发展学生合理推理的能力。

二、教学重点、难点

1.探索计算器的用法。

2.用计算器探求数学规律。

三、教学方法

学生自主探究法。

四、教学过程

(一)新课导入

我们在前几节课分别学习了平方根和立方根的`定义,还知道乘方与开方是互为逆运算。 比如23=8,2叫8的立方根,8叫2的立方,有时可以根据逆运算来求方根或平方、立方。对于10以内数的立方,20以内数的平方要求大家牢记在心,这样可以根据逆运算快速地求出这些特殊数的平方根或立方根,那么对于不特殊的数我们应怎么求其方根呢?可以根据估算的方法来求,但是这样求方根的速度太慢,这节课我们就学习一种快速求方根的方法,用计算器开方。

(二)新课讲解 【师】请大家互相看一下计算器,拿类型相同的计算器的同学请坐到一起。这样便于大家互相讨论问题。如果你的计算器的类型与书中的计算器的类型相同,请你按照书中的步骤熟悉一下程序,若你的计算器的类型不同于书中的计算器,请拿相同类型计算器的同学先要探索一下如何求平方根、立方根的步骤,把程序记下来,好吗?给大家8分钟时间进行探索。

五、课堂小结

1.探索用计算器求平方根和立方根的步骤,并能熟练地进行操作。

2.经历运用计算器探求数学规律的活动,发展合情推理的能力。

八年级上册数学教学计划 篇3

一、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。两班比较,83班优生多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。84班学生单纯,有大多数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

二、教材分析

第一章 平 行线是在七年级上第七章提出平行线的概念、画法后的延续,这章将继续学习平行线的有关判定和性质;教学时把握证明难度,避免概念超前,加强形的建模。教学应注意以下几点:1、说理的过程仍以填空为主,注意避免综合性较强的说理出现。2、要避免证明、命题、定理、公理等词的口头出现,课本是以判定方法、性质、结论来描述。3、要注重现实生活中的实物情景抽象为相交线、平行线等数学图形的建模过程。4、还应注意画图、探究性题的教学。另外对教材中(1)P8 例2出现了添辅助线的说明方法,教师需根据实际情况,不要作深入展开,(2)P20 第5题:不是很明确其意图。

第二章 特殊三角形是在七年级下册第一章三角形的基础知识和全等三角形的基础上学习等腰三角形、等边三角形、直角三角形的判定和性质,进一步熟练几何符号语言的表达、书写;教学时要控制证明的综合难度,侧重计算与形状的判定。本节与以往教材相比较,有以下特点:1、加强了对等边三角形的学习要求;2、强化了直角三角形斜边上的中线等于斜边的一半的性质3、淡化了300角所对的直角边等于斜边的一半的性质。4、P28 等腰三角形的判定说明、P36 例3,教师可简单提出辅助线的作法、作用、要求,但不要藉此来提高难度。5、可以在勾股定理的知识上,让学生去研究探讨,增强数学人文性教育。另外教材中的(1)P24—4、5两题的难度较大,综合性较强,教师要作提示、作小结; (2)教师最好还是根据实际情况补充300角的直角三角形性质;(3)勾股定理这节中出现了不少“定理”一词,是否在教学时可改。

第三章 直 棱柱是从七年级上册提出立体图形概念后第一次对立体图形的研究,与原浙江版义务教材相比,是较新的一章(原教材有立体图形直观图的画法),主要是培养学生空间想像能力,也是为高中阶段立体几何中棱柱的学习做准备;教学时要借助实物、课件的展示,逐步构建空间想象基础能力,教材重点落在两处: 1、直棱柱特征及表面展开图2、画三视图,关键要理解“长对正,高平齐,宽相等”法则。因此,在教学中要注意1)充分利用实物、课件、实际动手操作等途径,使学生能慢慢的在实物与空间想象之间找到一些转换的经验,(2)在教学时对解答过程、说理过程不作过高的要求,避免过高的严密的要求挫伤学生学习本章的积极性。

第四章 样本与数据分析是在学习了七年级上册第六章数据收集与图表的基础上,对科学取样、数据分析、合理化决策的研究学习,是实用性较强的一章;教材以生活现象为导入背景,以解决问题为达成目标,教学应注意(1)避免对样本、总体、个体的定性的描述;(2)增加了对某一事件研究抽样与普查的方法选择;(3)加强了对平均数、众数、中位数、方差标准差这些数据处理方法的决策判断,

第五章 一元一次不等式是在掌握了七年级上册第五章一元一次方程及七年级下册第四章二元一次方程组的基础上,学会一元一次不等式(组)的解法,以及利用一元一次不等式解应用题;教学时应注重与方程、等式的迁移类比,发挥数轴工具性,建立数形结合分析问题的习惯。

第六章 图形与坐标是函数知识学习的开始,与老教材比较也是较新的一章,重在突出直角坐标系的建立与运用,其中也有一部分知识与七年级下册第二章图形和变换相关; 教学时应重视场境模拟,降低坐标表达的抽象,侧重变换图形的坐标描述。 当然更应注意多利用实际场景图示,降低点的位置表达的抽象性,增加点与有序数对的对应性。

第七章 一次函数是在第六章建立直角坐标系后通过对实际生活中变量间变化关系的刻画,侧重了函数是刻画现实生活的又一数学模型。注重函数建模,降低函数抽象图形分析,融合方程、不等式、函数的统一,教学中应做到1、突出了函数是生活中变量之间数量关系的刻画。很多问题是以实际生活背景为载体。2、函数解析式,一次函数,正比例函数的教学顺序做了调整。3、要加强函数基础知识的练习,要注重解题时从应用中来到应用中去的理念。要充分利用合作小组讨论,有足够形成建模的时间,切忌分析模式化,练习呈式化。

另外,本书的设计题(P95, P181)切合学生实际,容易操作,要好好利用,既培养学生的动手能力又增强学生学习数学的兴趣。在课题学习P181-182《怎样选择较优方案》时,根据班级的实际情况建议作为一堂较重要的方程、不等式、函数综合应用课来讲。

三、提高学科教育质量的主要措施:

1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

八年级上册数学教学计划 篇4

一。指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。

我校七年级下学期学生期末考试的成绩平均分不是很好,总体来看,成绩很低。在学生所学知识的掌握程度上,整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

三、教材分析

第十一章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十二章轴对称立足于生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十三章实数主要介绍了平方根、算术平方根、立方根实数的概念。理解乘方与开方之间是互为逆运算的关系。了解无理数和实数的概念,知道实数和数轴上的点一一对应。能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算。

第十四章一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现————”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十五章整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

四、教学措施

1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素养。

5、教学中注重自主学习、合作学习、探究学习。

希望各位教师能够认真阅读最新一年八年级上册数学教学计划,努力提高自己的教学水平。

八年级上册数学教学计划 篇5

一、指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。本班是刚刚接手,对班上学生不了解,从原科任老师处得知:优生不多,但后进生却较多,有不少学生不上进,基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、教材分析

四、教材分析

第十一章 三角形

本章主要学习与三角形有关的线段、角及多边形的内角和等内容。 本章重点:三角形有关线段、角及多边形的内角和的性质与应用。 本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。

第十二章 全等三角形

本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的

性质与判定解决实际问题的思维方式。

教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。

教学难点:领会证明的分析思路、学会运用综合法证明的格式。 第十三章 轴对称

本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。

教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。

教学难点:轴对称性质的应用。

第十四章 整式的乘法和因式分解

本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。

教学重点:整式的乘除运算以及因式分解。

教学难点:对多项式进行因式分解及其思路。

第十五章 分式

本章主要学习分式及其基本性质,分式的约分、通分,分式的基本运算,分式方程的概念及可化为一元一次方程的分式方程的解法。 教学重点:运用分式的基本性质进行约分和通分;分式的基本运算;解分式方程。教学难点:分式的约分和通分;分式的混合运算;解分式方程及分式方程的实际应用。

五、教学方法:

本学期针对不同的情况,根据学生的掌握的情况及教材的地位与作用采用比较灵活的教学方法,主要采用启发式教学,以激起学生的学习知识的积极性,培养学生的独立思考、自学能力为主,主要有:

1、学生猜想与学生动手操作相结合。

2、学生独立思考与教师指导相结合。

3、理论与实际相结合。

4、面向全体学生与照顾个别相结合。

5、组织练习与成绩考查相结合。

六、教学措施:

1.认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,让学生学会认真学习。

2.兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3.引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。

4.引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5.运用读新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念,将带来不同的教育效果。

6.培养学生良好的学习习惯,有助于学生进步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7.进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

8.站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。

9.开展课题学习,把学生带入研究的学习中,拓展学生的知识面。

10.搞好单元测试及试卷分析,针对试卷中存在的问题,及时采取行之有效的补救措施,切实解决学生数学学习中存在的困惑。

七、课后辅导:

为了更好地提高教学效果,补充课堂教学中的不足之处,辅导是必不可少的一环,主要有:

1、布置作业,及时检查并订正。

2、课后对学生知识掌握情况进行调查,教学效果进行咨询,哪些知识点还需进一步巩固,哪些知识还没有讲解透彻,可以从学生那里获得第一手资料,从而调整自己的教学计划。

3、激励学生多问为什么,扩大学生的知识视野。

4、努力开展第二课堂活动,补充课堂教学的不足之处,调动学生学习的积极性和学习兴趣。

5、及时了解学生的思想变化,帮助学生解决学习与生活中的一些难点,及时做好学生的政治思想工作。

八年级上册数学教学计划 篇6

多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。在此为您提供八年级上册数学勾股定理教学计划,希望给您学习带来帮助,使您学习更上一层楼!

一、内容和内容解析

本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:20xx年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。

勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。

学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。

本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容 教学难点:勾股定理的论证

二、教学目标及目标解析

1、教学目标

①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。

②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。

④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。

2、目标解析

①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。

②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2 数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。

③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。

④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。

三、教学问题诊断分析

学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。

对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。

四、教学支持条件分析

根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式。在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程。

五、教学过程设计

(一)创设情境,导入新课。

问题1:请同学们欣赏20xx年国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)

教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。

【设计意图】以国际数学家大会------“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识。

方案1:如果学生能够说出勾股定理的相关知识,则直接

进入下一环节的学习。

方案2:如果学生有困难,则安排学生自学教材,再发表意见。

学生发言,教师倾听。视学生回答的重点 板书 :勾三股四弦五 等

【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。

(二)观察演算,合作探究,初具概念

问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系? (故事附后)

教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。

【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。

问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。

教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。(学习案附后)

【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。

问题5:你是怎样演算的?

教师关注学生之间的交流,关注学生借助面积法探究问题的不同解法,选取代表性的方法演示。学生个体或小组探究、交流。

视学生的学习情况确定下步的教学:

方案1:学生能够用面积分割法如图一或用面积补全法如图二的方法验证了结论,则直接进行下一步的教学。

方案2:学生不能够得到,探究学习有困难,则教师借助ppt课件演示,精讲点拨面积的割补法,对命题进行验证。

【设计意图】教无定法,视学定教;学生是学习的主人,教师是学生学习的合作者。学生亲自画图,演算,利于对结论的理解。亲身感受知识的产生、形成,初步体会面积法;再次了解勾股定理。

问题6:通过我们大家一起的实验,你得到任意直角三角形的三边之间有什么关系吗?试用语言描述。

学生描述,教师板书。

【设计意图】加深对勾股定理内容的叙述、理解,达成目标。体会数学观察---探究---整理----归纳的数学方法,体验学习的成功。

(三)引导实验,探究论证,形成体系。

问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。

教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。

【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。

问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放 画出图形并用面积法进行论证。

学生或小组间进行合作实验,共同协作探究;教师巡视指导。

【设计意图】学生自主探究,再次理解勾股定理,学会面积法论证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。

问题9:教师选取代表性的拼接方法,全班展示。

【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。

(四)归纳提高,巩固运用,形成能力。

问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?

学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。

【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。

问题11:完成以下练习题

教材69页第1题、

学生独立完成;教师巡视指导,板书得数,介绍勾股数。

【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。

(五)归纳小结,反思提高

问题12:通过本节课的学习,你有哪些收获?

学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。

【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。

小编为大家提供的八年级上册数学勾股定理教学计划大家仔细阅读了吗?最后祝同学们学习进步。

八年级上册数学教学计划 篇7

教学目标:

1.知识目标:

(1)掌握解分式方程的步骤。

(2)理解解分式方程时验根的必要性。

2.能力目标:

会按照解分式方程的步骤解分式方程。

3.情感与价值观:

(1) 培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

(2) 运用“转化”的思想,将分式方程转化为整式方程,从而获得成就感和学习数学的自信。

老师引导学生自主探索分式方程的解法,将分式方程转化为整式方程,在解题中亲身体验“转化”思想。弄清了“转化”的方向,也就明白了解分式方程的步骤,解题思路自然清晰,能力随之形成。

重点:

1.探索解分式方程的步骤,熟练掌握分式方程的解法。

2.体会解分式方程验根的必要性。

难点:如何将分式方程转化为整式方程;体会分式方程验根的必要性。

学情与教材分析:我所任教的学生大多头脑聪明,在老师适当的引导下,有一定的探求新知识的能力。但基础不够扎实,如计算容易出错、考虑问题不够严谨等。另外在学习本节课之前,已经学习过《解一元一次方程》。对于《解一元一次方程》大部分同学已经掌握,但由于是在七年级学习,有一定的时间间隔,部分同学可能已经遗忘,给上本节课留下少许的困难。但估计绝大部分同学稍加回忆,应能接近以前的水平。本节课的内容处在《分式》这章的后半部。《分式》这章内容安排如下的:首先介绍分式及分式的基本性质,接着进行分式的加、减、乘、除的运算,之后是根据实际问题列出分式方程(但未求解)。紧跟其后的是本节课内容——解分式方程,最后一节是根据实际问题列出分式方程并求解。由此可见《解分式方程》涵盖了本章前面的内容,是本章知识的综合与提高。学习好这部分内容,不但掌握了初二阶段有关分式方程的内容,也为初三学习可化为一元二次的分式方程打下了良好的基础。通过将分式方程转化为整式方程(一元一次方程)渗透了一种重要的数学思想——转化思想,即将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题。

教学准备:投影仪、各例题的标准解答过程。

教学过程:

一、课堂导入

由课本第87页(即前一节课的`内容:根据实际问题列出分式方程,但未求解)产生的方程入手,引入解分式方程的必要性。

二、新课:

例1 解分式方程:

(1) 由学生自主探索或互相讨论完成,老师巡视学生完成情况,对于学生可能出现的几种典型的解法用投影仪展示,让同学讨论,得出较好的解法。

[设计意图:课文的第一个例子是:_______,这个例子我估计绝大部分学生会采用交叉相乘(以往教学中学生常常提及)。虽也去掉分母,但学生还没意识到是在两边乘了最简公分母_____,若我自己去解释,又有灌输之嫌。于是我干脆暂时避开此例,自己设计一个例子_____,这样避免了学生采用交叉相乘的方法求解]

[学情预设:由于本节课的内容是紧接在分式的运算之后,多数学生会对方程进行通分,发现分母相同,得出分子应相等,解出x的值。这种情况与直接去分母效果相同,但解法较繁琐。第二种情况是与解含有分母的整式方程(如: )相联系,模仿整式方程的解法去分母,化为整式方程,求解整式方程得解。估计采用第二种方法的学生是少数的。另外,若没有学生采用第二种方法,我会展示自己依第二种方法的解答过程,以供学生进行讨论、比对,在讨论中感悟到第二种方法更简便。突破本节课的难点]

(2)引导学生检验刚才求得的解是否是原方程的解。

[设计意图:让学生明白将值代入原方程检验是分式方程验根的一种方法,另一种方法是直接检验分母是否为0,这种方法将在后面涉及]

[学情预设:学生可将求得的值代入原方程,但书写格式不规范,如有的同学将解直接代入方程两边,却仍用等号将左右两边相连,然后两边同时计算。我计划用投影仪,选择几位同学的做法显示给大家。让大家评选出最好的格式——将解得的根分别代入方程的左右两边计算,看左、右两边的结果是否一致]

[知识链接:对于验证一个值是否是方程的解,在求解一元一次方程时,有进行过相应的训练。绝大多数学生明白可将值代入原方程,但他们往往将值同时代入原方程。

显然,这种书写不够规范。应分别代入两边验证为好]

例2 解方程:

让学生自已求解,解得_____,引入增根的概念。并说明验根除了代入原方程,还可检验各分母是否为0,从而判别是否是增根。

[设计意图:学生不明白为何代入原方程的分母或最简公分母也可验根,我设计此例的目的是让学生明白解分式方程可能会产生让分母为0的根,即增根,自然以后解分式方程要检验了]

[学情预设:在前面学习分式有关内容时,学生对于像_____是相反的关系掌握得很好,可以轻松得出 _____,这样在方程两边同时乘以_____即可。若学生没注意到这个细节,老师可稍加提示]

[知识链接:有了第一个例子,学生已经明白解分式方程的步骤,可以自行解此方程]

例3 解方程:

[设计意图:此题需要学生对分母分解因式,为解最一般的分式方程起示范作用]

[学情预设:有学生直接在方程两边乘以_____。这种方法可以,但繁琐。在学生解完之后,引导他们对在方程两边乘以最简公分母 还是乘以 进行对比。得出较简便的方法]

[知识链接:学生已经学习过分解因式 ___

三、阶段小结:

引导学生总结解分式方程的步骤:

1.在方程的两边同时乘以最简公分母,约去分母,化成整式方程。

2.解这个整式方程。

3.验根_______,引导学生对两种验根方法的优、缺点进行讨论。

[设计意图:梳理一遍解题步骤,解题思路会更清晰]

四、强化练习:

1.完成课本第90页的随堂练习。完成后学生相互交换改卷,查找错误并打分。评分标准由学生在课堂上集体商定。

[设计意图:将小结的知识点内化到学生的知识结构中。简单机械做题,有一定的效果,但效率不高。学生自测,接下去同学互改,能调动学生的积极性。在商量评分标准的过程中,学生自然体会到各个步骤的重要性。这样既完成了强化练习,又提高了学习效率]

一键复制全文保存为WORD
相关文章