《正方体长方体的表面积》教案(优秀23篇)

身为一名到岗不久的老师,教学是我们的任务之一,写教学反思能总结教学过程中的很多讲课技巧,那么写教学反思需要注意哪些问题呢?

长方体和正方体的表面积教学反思14 1

立体图形的研究和学习可以充分发展学生的空间思维能力和想象力,而动手操作更能帮助学生直观的理解知识。

在《长方体和正方体的表面积》这节课的教学上,我首先让学生用自制的长方体和正方体模型,通过交流讨论,明确了长方体的表面积其实就是求六个面的面积和。在第一节的知识经验上,学生已经知道长方体六个面可以分成三对,每对的两个面都相等。在此基础上,学生独立完成例题的解答,学习兴趣很高,很快就得出了长方体表面积的计算方法。最后通过交流,学生们除了得出两种计算方法外,还得出了特殊的长方体的表面积计算方法,即有一对面是正方形的长方体的'表面积计算方法。接下来,独立思考并得出正方体的表面积计算方法就水到渠成了。学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。

最后,让学生同桌交流,发言总结出本节课的知识要点,经过多位同学叙述,归纳出要点和规律。

教师是学习活动的组织者、引领者和亲密的伙伴。以引导、合作、探究的学习方式进行教学,探究气氛也更活跃,学生的探究能力有了一定提高。

长方体和正方体的表面积教学反思14 2

出示例5:一个长方体玻璃鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?(鱼缸的上面没有玻璃)

一起分析题意后,学生列式计算。

生1:先算出6个面的总面积,再减去上面的面积。(5×3.5+3×3.5+5×3)×2-5×3

生2:先求出前后、左右、下面的面积,再相加。式子是:5×3.5×2+3×3.5×2+5×3

生3:我的方法和刚才的基本相同,列式上可以再简单些:(5×3.5+3×3.5)×2+5×3

三种方法都交流完后,我本以为就到此为止了,但我班的数学课代表举手了,他说:“我还有方法”。

我一楞,心想,方法不是都讲完了吗?怎么还有?但我还是叫起了他,想让他说说。

他说:我从生3的方法上想到了一个更为简便的式子:(5+3)×3.5×2+5×3

咦?这不是把生3的式子运用乘法分配律而得到的吗?这个式子每一步会有具体的`含义吗?

我一抛出这个问题,该生起初一楞,当时只顾着寻求不同的列式却没考虑意思,现在一时间回答不上来了。

但其余同学被他的思路启发后,思维一下子打开了。

一位学生解释道:底面先不看,如果沿着高将玻璃缸展开,会变成一个长方形,这个长方形的长就是原长方体长加宽的和的2倍,这个长方形的宽就是原长方体的高,所以这个长方形的面积就是(5+3)×3.5×2,再加上一个底面积,就可以列成(5+3)×3.5×2+5×3的式子了。

该学生解释,我配合着画图,在图形的帮助下,众学生豁然开朗。

[反思]多好的思路,多好的解释!我庆幸没为自己的卤莽而抹杀了一个创新的方法,我也为自己课前预设的不够周全而后悔。在之后的教学中,我发现用这种方法的地方有很多,如在教学完例5后的练一练的第1题:一个长方体饼干盒,长17厘米,宽11厘米,高22厘米。如果在它的侧面贴一圈商标纸,这张商标纸的面积至少有多少平方厘米?这道题也可以用(17+11)×2×22的方法来做,且比较简单。在今后的教学中,教师还得用心去细细研读教材,逐一分析每一道题,力求做到预设全方位。

《正方体长方体的表面积》教案 3

教学目标:

结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。

知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。

3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。

教学重点

1、长方体、正方体表面积的意义和计算方法。

2、确定长方体每一个面的长和宽。

教学难点

1、长方体、正方体表面积的意义和计算方法。

2、确定长方体每一个面的长和宽。

教学媒体

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

教学过程

一、复习准备。

(一)口答填空。

1.长方体有( )个面,一般都是( ),相对的面的( )相等;

2.正方体有( )个面,它们都是( ),正方形各面的( )相等;

3.这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

4.这是一个( ),它的棱长是( )厘米,它的'棱长之和是( )厘米。

(二)说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)

二、学习新课。

(一)长方体和正方体表面积的意义。

1.教师提问:什么叫做面积?

长方体有几个面?正方体有几个面?

(用手按前、后,上、下,左、右的顺序摸一遍)

2.教师明确:这六个面的总面积叫做它的表面积。

3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。

4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

(二)长方体表面积的计算方法

1.学生归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

前后两个面大小相等,它是由长方体的长和高作为长和宽的;

左右两个面大小相等,它是由长方体的高和宽作为长和宽的。

2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)

老师板书:

上下面:长×宽×2

前后面:长×高×2

左右面:高×宽×2

3.练习解答。

做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

长方体和正方体的表面积教学反思14 4

长方体和正方体的表面积这部分内容,是第十册北师大教材第二单元长方体(一)的一个重点,也是难点。它是在学生认识掌握了长方体和正方体特征的基础上教学的。教学的难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看,摸一摸等来认识概念,理解概念。

准备一个长方体纸盒,把纸盒沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,让学生注意展开前长方体的。每个面,在展开后是哪个面。为了便于对照,让学生在展开后的每个面上,分别用“上”“下”“前”“后”“左”“右”标明他们分别是原来长方体的哪个面。然后,提问:长方体有几个面?哪些面的面积是相等的?引导学生联系长方体的特征回答。这里关键是根据长方体的长、宽、高,正确的判断每个面的长和宽应该是多少。让学生按照上、下、前、后、左、右的顺序,依次说出每个面的面积怎样算的。

《方体的表面积》这节课时,主要是沿着什么是长方体的表面积——怎样求长方体的表面积——为什么求长方体的表面积这样一条线来安排教学的。在教学实践中,我发现对教材的深度钻研和对学生的预设显得尤为重要。课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积再乘以2;对于今天金校长提出的把侧面的四个面展开看成一个长方形求面积,再加上上下两个面的面积的巧妙方法却没有考虑到。实际生成时,学生只说出了其中的一种简便情况,如果我在课前有更深入的研究,还可拓展学生思维,引导学生找出第四种方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。

牐犑导表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性。

长方体和正方体的表面积教学反思14 5

在教学《长方体和正方体的表面积》时,我首先让学生仔细观察手中的长方体,然后让学生认真思考长方体各个面的面积与长方体的长、宽、高之间的关系,从而让学生知道:

前、后面=长×高×2;

左、右面=宽×高×2;

上、下面=长×宽×2。

最后总结归纳:

长方体表面积的计算公式:

方法(一):S=长×高×2+宽×高×2+长×宽×2

方法(二):S=(长×高+宽×高+长×宽)×2

正方体表面积的计算公式:

S=棱长×棱长×6

在计算长方体和正方体表面积时,要考虑到以下几种情况:

1、完整的(六个面都有)长方体或正方体

这种类型的题目,直接套用表面积计算公式即可。

2、无底或无盖的长方体或正方体(如粉刷教室、鱼缸、游泳池等的表面积)

这种类型的。题目,首先要看清楚要计算的是哪几个面,然后再进行解答。

公式:S=长×高×2+宽×高×2+长×宽

3、求长方体或正方体四周的表面积

它指的是长方体或正方体周围四个面(即前面、后面、左面、右面)的表面积。

公式:S=长×高×2+宽×高×2

总体说来,这部分知识只要掌握了长方体和正方体的表面积及计算方法,对于学生们来说是很容易的。学习困难的学生在教师的指导下,也能学得很不错。表面积的计算公式,同学们也能做到运用自如。但中间还是出现了一些问题,比较严重的就是学生的计算能力不强,导致解题过程中出现了不少错误。今后,我需要在这一方面采取一些措施,如通过小组竞争等方式来提高同学们计算的准确性。

长方体和正方体的表面积教学反思14 6

(一)创设情境,提出问题

师:(电脑出示饼干盒、木箱)这两个物体大家认识吗?它们分别是什么体?

生1:饼干盒是长方体。

生2:木箱是正方体。

师:对于长方体和正方体你们已经知道了什么?

生1:长方体和正方体都有6个面,12条棱,8个顶点。

生2:长方体相对面的面积相等。

生3:长方体的每个面都是长方形,可能有两个相对面是正方形。

生4:正方形的6个面的面积相等。

……

师:同学们知道的可真多,那对于这两个物体你还想知道什么?

生1:我想知道它们的12条棱共有多长?

生2:我想知道它们的面积是多少?

……

师:同学们想知道的可真多,我们今天先来研究长方体和正方体的表面积好吗?(板书课题)

(二)探究

1、表面积的意义

师:那什么叫做长方体和正方体的表面积?

(拿出饼干盒、木箱)谁愿意上来摸一摸,并说说什么是它们的表面积?

生1:(边摸边说)长方体6个面的和是它的表面积。

生2:(边摸边说)正方体6个面的和是它的表面积。

师:(电脑演示长方体、正方体展开的过程)长方体和正方体6个面的总面积叫做它们的表面积。

师:现在知道了长方体和正方体6个面的总面积,就叫做她们的表面积。我们身边还有许多物体,你能举例说说它们的表面积吗?

生1:课本是长方体,它6个面的面积和是它的表面积。(边说边摸)

生2:橡皮的6个面的面积和是它的表面积。(边说边摸)

……

师:老师这里也有两个物体(出示无盖杯子和香皂盒),这两个物体的表面积在哪里?谁愿意上来摸一摸。

(指名学生上来边摸边说)

师:象这些物体几个面的总面积,就叫做它们的表面积。

2、表面积的计算

(1)一般长方体的表面积计算

师:现在我们知道了什么叫做物体的表面积,(拿出1号长方体木块)请同学们猜猜这个长方体的表面积可能会和它的什么有关?

生1:可能和长方体的棱长有关。

生2:可能和它的长、宽、高有关。

师:那请大家再猜猜它的表面积大概会是多少?

生1:74平方厘米。

生2:90平方厘米。

生3:120平方厘米。

……

师:那这个长方体的表面积到底会是多少呢?你们敢自己去探究它的表面积吗?

生:敢。

师:真勇敢,那请同学们拿出1号物体独立思考一下,求它的表面积需要测量它的哪几条棱,怎样计算3的表面积,好吗?然后再开始研究,研究时做好记录,完成表格,如果自己研究有困难,可以和小组里的同学一起研究。

数据记录计算方法

长方体长:

宽:

高:

(自主探究)

师:接下来我们在小组里交流一下自己的方法,交流时要求每位同学都说说自己的方法,交流结束后各小组准备派两个代表汇报。(生在小组里交流)

师:各小组准备汇报你们组里的方法,汇报时先说说记录下来的数据,再说说你们是怎样求得它的表面积?

生1:我们先算上面的面积10×6,再算左侧面的面积4×6,再算前面面的面积10×4,因为长方体相对面的面积相等,所以把3个面的面积加起来,再把它们的和乘以2,10×6+4×6+10×4(方法一)

生2:我是先算上面的面积10×6,因为上下两个面的面积相等,所以上下面的面积和是10×6×2,再算前面的面积10×4,因为后面的面积和它也相等,所以前后面的面积和是10×4×2,然后算左侧面的。面积6×4,右侧面的面

积和它相等,它们的和是6×4×2,最后把他们加起来是10×6×2+10×4×2+6×4×2。(方法二)

生3:10×(4+6)×2+4×6×2(方法三)。

师:你是怎样想的?

生3:因为前后两个面的面积是10×4×2,上下两个面的面积是10×6×2,两部分合起来是10×4×2+10×6×2,我再利用乘法分配律把它改写成10×(4+6)×2,再加两个侧面的面积10×(4+6)×2+4×6×2。

师:你真聪明!

师:现在我们来看看刚才的猜测,我们猜得准吗?

生:不准。

师:不过同学们还是很能干,研究出了这么多种计算长方体表面的方法,那么,在这么多种计算方法中,你比较喜欢哪一种?

生1:我比较喜欢第一种方法。

生2:我喜欢第三种。

……

(2)特殊长方体、正方体的表面积计算

师:接下来,我们就用自己喜欢的方法来解答两个物体的表面积,每个桌上还有两个物体,2号长方体的长是8厘米,宽是5厘米,高也是5厘米,正方体的棱长是5厘米,请你们求出他们的表面积。

生独立计算后交流

师:我们先来看2号物体,说说你是怎样解答的?

生1:8×5×2+8×5×2+5×5×2。

生2:(8×5+8×5+5×5)×2。

生3:8×5×4+5×5×2。

师:说说你是怎样想的?

生3:因为这个长方体的左右两个侧面是正方形,所以中间4个面就相等,先算出一个面的面积8×5,把它乘以4就可以了,再加上两个侧面的面积5×5×2,就是8×5×4+5×5×2。

师:这三种方法,你们比较喜欢哪一种?

生:第三种。

师:我们再来看看这个正方体,你是怎样求它的表面积的?

生1:5×5×6,我是这样想的:因为正方体6个面的面积相等,所以可以先算一个面的面积,再乘以6。

生2:5×5×2+5×5×2+5×5×2。

师:哪种方法比较简便?

生:第一种。

师:看来特殊情况下,我们还要灵活处理,可能回有更好的方法。

……

长方体和正方体的表面积教学反思 7

设计思想

“长方体和正方体的表面积”是在学生已经掌握了一些简单的平面图形知识的基础上,过渡到初步的立体图形上学习的。本节课的学习目标是让学生进一步认识长方体和正方体的特征,掌握长方体和正方体表面积的计算,体现“立体——平面——立体”螺旋上升、循序渐进的教学思想,并通过平面图形和立体图形的联系沟通,培养和发展学生初步的空间想象能力。课堂教学是素质教育的主渠道,素质教育是以全面提高全体学生的基本素质为根本目的,以弘扬学生的主体性和主动精神为主要特征,注重开发学生的智慧潜能,注重形成人的健全个性。因此在小学数学课堂教学中,引导学生主动参与,自主探索,锤炼思维,培养能力,发展智力,浸润情感态度是素质教育的应有之义,“长方体和正方体和表面积”一课,正是从这一思路出发预设、生成教学过程的。

1、从生活实际引入新课

创设一个能够吸引学生的、源于生活的、有趣的、有用的、可操作的、可探索的情景,有利于激发学生的学习兴趣和愿望,使学生处于积极主动的学习状态,有利于学生自主探索。新课标强调“要让学生在现实情境中和已有知识的基础上体验和理解数学知识”“要提供丰实的现实背景”任何知识源于生活又服务于生活。生活中处处有数学,让现实的生活数学走进学生视野,使生活数学与数学问题有机地结合起来,使学生体会在生活中做数学的乐趣。设计时应从生活实际出发,引导学生明确学习求长方体、正方体表面积的必要性,以激发学生的求知欲。

2、按知识形成发展过程展开新课

知识的形成发展是有层次的,且与旧知识紧密相连。新课展开必须以学生原有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。为此,新课的组织展开以有利于教材结构与学生的认知结构产生同化,有利于学生主动建构为目的。

3、运用现代化教育手段,显现知识结构

学生计算长方体、正方体表面积必须具有较强的空间观念,这是教学的难点。为此,借助于实物投影、模型、多媒体课件,让学生观察、触摸、拼拆、抽拉、展示,全方位感知,培养空间观念,寻找知识的结合点,让各种现代化教学手段协同互补在提高课堂教学效率与质量上发挥更好的媒介作用,实现信息技术与数学教学的整合。

“长方体和正方体的表面积”教学案例与反思案例:

一、创设情境,激发兴趣,理解表面积的意义。

师:(出示一个长方体纸盒和一个正方体纸盒)猜一猜,这两个纸盒那个用的纸板多? 生:我觉得这个长方体用的纸板多。因为它比这个正方体长。

生:我觉得这个正方体用的纸板多。因为它比这个长方体高。

生:我觉得这两个纸盒用的纸板同样多。因为这个长方体比这个正方体长,而这个正方体又比这个长方体高。中和一下就同样多了。

师:如果只靠我们这样空口无凭地去猜,能否得出正确结果?

生:不能。

师:那我们应该怎么办?

生:我们应该分别计算出它们的六个面的总面积。

师:你的想法真不错。长方体或正方体6个面的总面积就叫做他的表面积。摸一摸、说说长方体的表面积都包括哪儿?

生:边指边说,包括上下、左右和前后六个面。

二、动手操作,探究长方体的表面积的计算方法。

师:老师给每个小组都准备了8个长方形,要求:从给出的8个长方形中选出6个长方形围成一个长方体,同时思考:(出示)①长方体的6个面之间有什么关系?②长方体每个面的两条边分别与相邻两个面的边长有什么关系?通过量一量、剪一剪、拼一拼、摆一摆等方法求出长方体的表面积,并把讨论结果写在之上。

生:小组活动。

生:反馈交流

第一种方法:我们先求出每个面的面积,再把这六个面的面积相加,就能算楚这个长方体的表面积了。

第二种方法:我们先把长方体的六个面剪开,把相对的面摆在一起组成三大部分,再用长×宽×2+高×宽×2+长×高×2,就能算楚这个长方体的`表面积了。

师:你们的想法很好,还有其它想法吗?

生:还可以用乘法分配律把第二种方法写成(长×宽+高×宽+长×高)×2,也就是把长方体纸盒剪成面积相等的两大部分上面、左面、前面和下面、右面、后面。

师:你能够运用过去所学知识来解决新的问题,很会学习。在这些方法中,�

师:我们今天学的这种类型的题当然用第三种方法比较简便,但在实际生活中还会遇到很多实际情况,我们要根据实际情况灵活运用计算表面积的方法。

三、精心设计练习,逐步优化求长、正方体表面积的方法。

1、用你喜欢的方法计算纸盒的表面积。(单位:厘米)

2、选择求上、下地面是正方形的长方体表面积的最优方法。

①(5×3+5×3+3×3)×2

②5×3×4+5×3×3×2

3、选择求长、宽、高相同的长方体表面积的最优方法。

①3×3×6

②(3×3+3×3+3×3)×2

四、联系实际,灵活应用,培养学生创新的精神。

1、讲下列物体的表面积所包括的面进行分类。

(1)无盖的长方体木箱(2)正方体纸盒(3)在一个长方体游泳池四壁和底面抹水泥(4)长方体包装箱(5)手提袋(6)灯管的包装盒(7)字典的封皮(8)火柴盒,

2、一间教室,长8米,宽5米,高4.5米,要粉刷屋顶和四壁,除去门窗面积20平方米,粉刷面积是多少平方米?

反思:

《长方体和正方体的表面积》是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地建立表面积的概念和计算方法,应加强动手操作和直观演示,按照创设情境——实践操作——自主探究——掌握规律的教学流程进行设计教学方案。

本节课教学本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。

一、创设情境,以“争”激思

新课伊始,创设让学生“猜一猜”做一个长方体纸盒和正方体纸盒,哪个用的纸板较多这一情境,引发学生思考,“用什么方法才能比较出来呢?”学生通过思考与交流,认识到“必须分别计算出六个面的总面积”,这时教师因势利导指出:“长方体或正方体六个面的总面积叫做表面积”,然后再让学生摸一摸、说一说长方体的表面积包括哪儿?这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。

二、实践操作,以“动” 激思

数学知识具有高度的抽象性,我们要多引导学生在操作中思考加工,培养技能技巧,促进思维发展,因此,在教学长方体表面积计算方法时,先让学生动手操作,以长方体的特征为依据,从给出的8个长方形中选取相应的面拼成长方体,同时让学生思考:①长方体六个面之间的关系?(相对的两个面是完全相同的。)②长方体每个面的两条边分别与相邻的两个面边长之间的关系?(每个面的两条边一定分别与相邻的两个面的一条边相等。)学生在动手拼的过程中,通过比较分析深刻地认识了长方体的特征,抓住了推导长方体表面积计算方法的关键,然后让学生在小组活动中通过量一量、剪一剪、拼一拼、摆一摆等方法,共同探索出长方体表面积的计算方法。在这里鼓励学生有不同方法,培养了学生的求异思维。

三、巧编习题,以“练”促思。

在学生掌握了长方体表面积的计算方法后,不单独安排时间推导正方体表面积的计算方法,而是设计了一道综合练习,(图略,选择求长、宽、高都是3厘米的长方体的表面积的最优方法。①3×3×6 ②(3×3+3×3+3×3)×2 ③3×3×4+3×3×2)。以选择题的形式出现,学生在说算式意义的过程中很自然地发现了正方体表面积的计算方法,这一设计,改变了以往将正方体的表面积独立用一单位时间教学的方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,在师生共同参与和评价中,达到优化思维,推陈出新的效果,并从中感受到学习的乐趣。

四、联系实际,以“用”促思。

数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我先出示了以下几种情况,(1)无盖的长方体木箱(2)正方体纸盒(3)在一个长方体游泳池四壁和底面抹水泥(4)长方体包装箱(5)手提袋(6)灯管的包装盒(7)字典的封皮(8)火柴盒,让学生从各种物体的表面积所包括的面进行分类。从中使学生认识到长、正方体的表面积也会遇到许多特殊情况,我们在求表面积是不可以千篇一律,死套公式,要根据实际情况具体问题具体分析。在此基础上,我又及时拓宽学生的思路,让学生举出在日常生活中,做哪些事与求长方体或正方体的部分面积有关,培养了学生的空间想象力和求异思维的能力。再有,与实际生活联系,学生乐学、愿学。

本节课教学也存在一定的不足,例如,优生在课堂上仍是主角,学困生由于动手能力差,思维跟不上,大部分时间只能充当观众与听众,从课堂练习可以看出他们对所学的知识一知半解,课堂如果让他们充分动手操作与表达,又会花费大量的时间,如何解决这样的矛盾,仍是我今后的重要研究内容。

长方体和正方体的表面积教学反思14 8

本课是在学生认识掌握了长方体和正方体特征的基础上教学的。教学的难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看,摸一摸等来认识概念,理解概念。

首先让每个学生准备一个长方体纸盒,把纸盒沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,让学生注意展开前长方体的每个面,在展开后是哪个面。为了便于对照,让学生在展开后的每个面上,分别用“上”、“下”、“前”、“后”、“左”“右”标明他们分别是原来长方体的哪个面。然后,提问:长方体有几个面?哪些面的面积是相等的?引导学生联系长方体的特征回答。这里关键是根据长方体的长、宽、高,正确的判断每个面的长和宽应该是多少。让学生按照上、下、前、后、左、右的顺序,依次说出每个面的面积怎样算的。

我在设计《长方体和正方体的表面积》这节课时,主要是沿着什么是长方体的表面积——怎样求长方体的表面积——为什么求长方体的`表面积这样一条线来安排教学的。在教学实践中,我发现对教材的深度钻研和对学生的预设显得尤为重要。课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积再乘以2;还可以把侧面的四个面展开看成一个长方形求面积,再加上上下两个面的面积的巧妙方法却没有考虑到。实际生成时,学生只说出了其中的一种简便情况,通过引导学生能找出其他的方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。

实践表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性。

长方体和正方体的表面积教学反思14 9

1、鼓励大胆猜想,诱发探究意识

关于猜想,著名数学教育家波利亚有一段精彩的论述:我想谈一个小小的建议,可否让学生在做题前猜想该题的结果或部分结果。一个孩子一旦表示出某些猜想,他就把自己与该题连在一起,他会急切地想知道他的猜想正确与否,于是他便主动地关心这道题,关心课堂的进展。在教学中,我从学生的生活实际出发,设计问题情境,为学生提供两种生活中常见的几何体(饼干盒、木箱),要学生说说“对于这两个物体,你已经知道了什么?”“还想知道什么?”使他们自发地提出所要探究的问题,然后再鼓励学生用自己的思维方式大胆地猜想:“这个长方体的表面积可能与什么有关?”“它的表面积大概会是多少?”学生凭借自己直觉和自己的数学实际,提出各种看法,虽然有些“猜想”是错误的,但创新的智慧火花瞬间被点燃,同时一种种不同的猜想又激起了学生的探究愿望和进行验证的需要。

2、搭建探究舞台,挖掘思维潜力

在上面的教学中,在学生独立探究长方体表面积计算的活动中,先引导学生思考“求长方体表面积需要测量哪几条棱?”“怎样计算他的表面积?”这两个问题,再让学生独立思考。在这独立思考的过程中,每个学生都在根据自己的体验,用自己的'思维方式自由的、开放地去探究,去发现解决长方体的表面积计算方法。在测量棱长的过程中,有的学生只测量长方体的长、宽、高就可计算,而有的学生其实也测量长、宽、高,但他们需要测量6次,也有的学生测量12次。在探索其计算过程中,有的学生是先算上面的面积10×6,因为相对面的面积相等,所以只用再乘以2,也就是10×6×2+10×4×2+6×4×2,有的是(10×6+10×4+6×4)×2,还有两位学生解决的方法更是出乎意料。在这过程中,我们不难发现学生的活动是自主的,是鲜活生动的,是富有个性和创造的,学生的创造潜力能在这样的活动中得到充分的发挥。学生经过自己的探究,找到了解决的方法,不仅智慧能力得到发展,而且获得了深层次的情感体验。

3、提供交流机会,实现合作互动

由于学生之间存在着各种差异,学习内容开放,学习活动自主。因此,面对同样的问题,学生中会有出现各种各样的思维方式

长方体和正方体的表面积教学反思 10

您现在正在阅读的《长方体和正方体的表面积》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《长方体和正方体的表面积》教学设计及反思苏教版小学数学六年级上册 长方体和正方体的表面积 教学设计

教学目标:

1、建立表面积概念。

2、小组合作探究长方体表面积的求法,在观察对比中,得到长方体表面积公式、正方体表面积公式。

3、运用公式实际应用,并提升学生的数学思维能力。

教学重点:

1、长方体表面积公式的求法探究。

2、公式的实际应用。

教学难点:

长方体表面积公式中长宽,长高,宽高呈现后,能够清晰的知道它们分别求的是哪些面的面积。

教具、学具的准备:长方体盒、正方体盒、桔子、长方体展开图、课件

教学研究过程:

一、回忆长方体、正方体特征,重建表象

1、师:我们已经初步认识了长方体和正方体,谁来说说长方体、正方体有哪些特征?

2、生:汇报

(长方体有6个面,每个面都是长方形或有两个相对面是正方形;长方体相对的面面积相等;长方体有8个顶点,12条棱,每平行的四条棱长度相等)

(正方体6个面都是完全相等的正方形,正方体是特殊的长方体,它的12条棱都相等)

3、师小结并引出课题

同学们对长方体、正方体认识的很好,今天我们一起共同来研究长方体、正方体的表面积。(板书课题)

二、建立表面积概念,认识表面积

1、师:看到这个课题,你最想知道或最想了解什么?

2、生交流:什么是表面积?

怎样求表面积?

求表面积在生活中有什么用途?

表面积和以前所学的面积有什么不同?

3、师拿一桔子;提出:你知道桔子的表面积指的是哪里吗?

生摸一摸,说一说。

4、师:物体表面的总面积叫做物体的表面积,长方体的表面积指的。是哪里,那正方体呢?

5、生指一指,摸一摸,说一说。

三、探求长方体表面积计算方法、正方体表面积计算方法

1、师:我们知道什么是表面积,如何来求它们的表面积呢?

小组内两两合作,把你如何求长方体表面积的思路与你的同桌进行交流。

(师在小组间巡视)

2、生交流汇报各种求长方体表面积的方法。

3、交流比较各种求法,继而得出长方体表面积计算方法(汉字与字母公式表示)

长方体表面积=(长宽+长高+宽高)2

S= 2(ab+ah+bh)

4、课件展示:通过课件的展示,让学生直观感受长方体

表面积方法的研究过程。

5、生总结:正方体表面积计算方法(含字母)

正方体表面积=棱长棱长6

S=6a2

四、基本反馈练习

1、计算一香皂盒的表面积

师:老师手里这个盒子的长为10cm,宽为7cm,高为3cm,

请你计算这个盒的表面积。

生试做,并指生上台板演

2、课件出示(三个立体图形),分别计算它们的表面积。

3、生在实物投影仪前讲解交流。

五、解释应用(课件出示题目)

您现在正在阅读的《长方体和正方体的表面积》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《长方体和正方体的表面积》教学设计及反思1、一长方体铁盒长18厘米,宽15厘米,高12厘米,做这个铁盒至少要用多少平方厘米的铁皮?

a、生交流思路

b、列式。

2、一正方体无盖木箱,棱长5分米,这一箱子的表面积是多少?

a、生试做

b、交流思路

3、一间长8米,宽6米,高4米教室,门窗面积是15平方米,要粉刷四壁和房顶面,粉刷面积是多少平方米?

a、小组内交流思路

b、全班交流解题策略

c、生计算

3、谈收获或体会

通过这节课的研究与交流,你的收获或体会是什么?

反思:本着让学生的主体性得到充分体现,实施学生主体参与教学的理念,在课堂教学中体现主体实验的两条基本原则,即诚心诚意的让学生做主人,严肃严格的基本训练。通过老师提供的材料,创设一切有利于学生主体参与的环境氛围,在教师的引领及点拨下,让孩子们自己去认知、去概括归纳总结,亲历知识形成的过程,在建构知识的过程中让更多的孩子体验成功的快乐,使孩子们真正成为课堂学习中幸福的主人,使孩子们获得有效的数学学习,学习质量得到提高。本着这一教学理念,这节课设计了以下几个大的框架。

框架一:从回忆长方体、正方体特征,重建长方体、正方体表象,为解决本解决本节课的知识搭建一个前台。

框架二:建立表面积概念

在提供实物这一材料下,通过看一看、指一指、摸一摸、说一说,调动多个感官来很好的认识、理解表面积这一概念。

框架三:探求表面积计算方法

在深刻建立表面积概念的基础上,通过小组的两两合作,由已建立的知识经验通过合作交流很快得到长方体表面积不同的求法,并从中比较,选择出较简捷的方法,继而得到公式,由于正方体是特殊的长方体,在长方体研究透彻后,轻松的得出求正方体表面积的计算方法。

框架四:巩固练习

公式得出后的基本应用,通过老师手中香皂包装盒表面积的计算,及时对知识进行反馈。

框架五:解释应用

把所学的数学知识用来解决生活中的实际问题,会加深对数学知识的理解,使孩子们体会到学习数学的巨大作用,并在应用中提升对数学理解的质量,由基本练习到变式练习,再到提升练习的设计,在交流思路的过程中,还渗透了审题意识及习惯的养成,并使孩子们体悟到遇到具体情况进行具体的分析,灵活而又准确的找到解题方法。

框架六:谈本节课的收获

孩子们从知识目标上谈,同时从情感态度价值观方面谈自身的体会与收获,对数学这一许多

在这节课中,每一个孩子学习数学的主动性被极大的调动了起来,从问题的提出到交流,整个过程可以看到孩子们都在主动热烈的参与,特别是在探求长方体表面积不同的求法时,孩子们智慧的火花不时的在课堂上迸发,有的从长方体两个相对的面为一组去分析,得到求法;有的把长方体的上面、前面和左面分为一组去求;还有的孩子从长方体展开的平面图去求,更可贵的是有的孩子能够想到用底面周长乘以高再加上、下两面面积的方法得到长方体的表面积。对问题的思考具有创新性与独特性,思维的深度得以发展。另外,孩子们语言的表述清晰、准确,声音洪亮,手拿学具示范时动作落落大方,谈体会与收获时精彩的发言给老师留下了深刻而美好的印象。从这节课上,可以看出孩子们对数学的情感是积极的,参与是主动的,同时,在达到完成教学目标的同时,数学思维得到了较好的发展,获得了有效学习。

这节课存在着一些遗憾的地方,例如:在探求长方体表面积方法的交流过程中,由于课堂上的生成情况较多,在处理时由于教学艺术的欠缺,耗时太长,以至于最后的几道提升练习来不及在课堂上完成,更多的精彩没有展现出来,留下了较大的遗憾。从这节课上,我收获了很多,同时,认识到自己在教学中还存在着较多的不足与问题。做为教师,课堂上当孩子们在热烈交流的过程中,要学会调控与把握,与教学目标关系不大时,要适时的把学生拉回来,一节课的时间是有限的。因此,教师要在钻研教材的基础上,要合理安排好时间,使孩子们在每一节课上的数学思维都得以发展与提升。这是一项长期而又艰巨的过程,它需要经验的积累,特别需要教师的教育智慧,教育机智,这需要历练与功夫,在今后的教学中,更要对教材深钻,准确的把握,因为这正是教学艺术的来源。

《正方体长方体的表面积》教案 11

教学内容:

正方体、长方体的表面积。

教学目标:

1.理解什么是立体图形的表面积;

2.掌握正方体与长方体的表面积的计算方法;

3.正确利用所学知识解决生活实际问题。

教学重点:

正方体与长方体的表面积计算方法。

教学难点:

如何利用所学知识解决生活实际问题。

教学准备:

长方体,正方体,多媒体。

教学过程:

一、 联系实际,揭示课题

同学们,学校利用这个假期同学们休息的时间,要对我们的教室进行从新粉刷。

在粉刷之前,校方提前进行了资料收集,收集的资料如下:

1. 每个教室的长8米,宽5米,高3米;

2. 每个教室要对四壁和屋顶进行粉刷;

3. 每个教室门窗的面积共20平方米;

4. 每个教室要粉刷三次;

5. 第一次粉刷每平米用涂料0.5千克;第二次和第三次粉刷每平米只用去涂料0.2千克。

6. 我校共有 个教室需要粉刷。 你能根据校方收集的上述信息帮助校方计算出应该买多少涂料吗? (揭示课题)

二、师生交流,提出问题

师:同学们,看到这个课题,你想知道什么?

生1:什么叫表面积?

生2:长方体与正方体的表面积怎么求?它们的表面积之间有什么关系?

生3:学了这些知识有什么用处?

[用与实际相联系的事例来引发学生的兴趣,使学生愿意学。这也正是符合了心理学中:教学过程始终是伴随着学生的情绪,并且智力活动也受其极大的影响的论点。在良好的情景创设下,学生学习十分容易地投入。]

三、师生互动,探究问题

1. 学生操作,解决问题;

(1)请同学们拿出准备好的正方体纸盒,请将这个正方体纸盒沿着棱剪开。 (学生操作) 我们将正方体沿着棱剪开,就得到了一个正方体表面的展开图。

(出示学生得到的正方体表面的展开图。)

(2)引导学生观察得到的正方体的展开图,思考:正方体表面的展开图有什么特征?

[学生通过操作得到正方体表面的展开图,由于沿着不同的棱剪开,就得到的正方体表面的展开图也不同,因此会有多种展开图,至于有哪几种展开图之一知识在二年级下的学习中已经解决,教师不需要展开。]

2. 组内交流,发表见解;

(1)正方体表面的展开图有6个正方形的面组成。 (2)它们的形状都相同。

(3)它们的面积都相等。

3. 教师引导,深入探究;

(1)想一想可以怎么求这6个面的'面积总和。 先求出1个面的面积,再乘以6,就是这6个面的面积总和。

(2)请你试着求一求你手中的正方体6个面的面积总和。

注意:先测量棱长的尺寸,再计算,取整厘米数。 (学生计算) 看书巩固,掌握方法; 刚才我们计算的就是正方体的表面积,那什么是正方体的表面积?正方体的表面积可以怎么求呢?书上有具体的介绍,请打开书,翻到P39,看书回答:

(1)什么是正方体的表面积?

(2)正方体的表面积的计算公式是什么?

[学生通过对自己手中的正方体表面的展开图的观察,自主探究,得出了什么是正方体的表面积。正方体的表面积可以怎么求的结论。最后通过看书规范自己的结论。]

四、巧加点拨,学而致用

1.追随上知,质问质疑

拿出手中的长方体纸盒,指出它的表面积,说说什么是长方体的表面积? 知道它的面积该怎样计算吗?

2.迁移知识,灵活运用

学生利用所学方法推导长方体的表面积计算公式。

3.组际交流,发表见解

4.看书小结,掌握方法

请打开书,翻到P40,看书回答:

(1)什么是长方体的表面积?

(2)长方体的表面积的计算公式是什么?

5.引用方法,灵活解答

算一算你同桌手中长方体的表面积。

[凡是学生能独立思考的,就放手让学生自己获得;凡是能通过小组合作解决的问题,就通过班级适当交流取得共识。当学生独立思考、合作学习都不能很好解决时,教师再适时指导、点拨。]

《正方体长方体的表面积》教案 12

教学内容:

苏教版六年级(上册)第页,第八页第一题~第五题

教学目标:

1、建立长方体和正方体的表面积的概念,理解长方体和正方体的表面积问题源于生活和生产实际。

2、掌握长方体表面积计算的基本思路和方法,能够正确熟练地计算长方体的表面积。

3、养成良好的观察分析的习惯。

4、使学生进一步感受立体图形的学习价值,增强学习数学的兴趣。

重点难点:理解长方体和正方体表面积的含义,掌握计算方法,能正确地计算表面积。

教学准备:多媒体课件

教具:长方体模型、正方体模型

学具:长方体模型、正方体模型

教学过程:

一、复习准备:

1、你知道正方体的那些知识的呢?

2、长方体有什么样的特征呢?

3、看图说说长方体的长、宽、高各是多少?

4、6个面可以分成三组:上下、左右、前后,分别怎样求其中一个面的面积。(上下面的面积=长×宽,左右面的面积=宽×高。前后面的面积=长×高)。

二、探究新知:

1、探究长方体的表面积计算

谈话:我们经常说资源再利用,今天老师手上有些硬纸板,想要同学们帮我制作一个长方体的纸盒。

例4:做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

(1)题问:求至少要用多少平方厘米硬纸板?实际就是求什么?(通过交流获得实际就是这个长方体6个面的面积之和。)

板书:长方体6个面的总面积

(2)一起回忆:这6个面我们分成3组的(上下面、左右面、前后面),上、下面面积=长×宽

左、右面面积=宽×高

前、后面面积=长×高

(3)提问:想办法列式计算出这样的一个长方体纸盒至少要用多少平方厘米硬纸板、?(请生回答,师板书在黑板)

(4)列式计算:

解法一:解法二:

6×4×2+6×5×2+5×4×2(6×4+6×5+5×4)×2

=48+60+40 =(24+30+20)×2

=148(平方厘米)=74×2

=148(平方厘米)

答:做这个纸盒至少要用148平方厘米硬纸板。

长方体表面积公式归纳:长×宽×2+长×高×2+宽×高×2

或(长×宽+长×高+宽×高)×2

(5)比较总结:这两种方法公式都很长,且在计算时长×宽与宽×长的意义是一样的,那变式就非常多,同学们有没有什么简单的方法能快速地记住这个公式呢?

(6)做一做

2、探究正方体的面积计算

谈话:方才同学们帮老师算了算做一个长方体的硬纸盒需要多少硬纸板,现在还想要同学帮我算算做一个正方体的硬纸盒需要多少硬纸板?

试一试:做一个棱长3分米的正方体纸盒,至少要用多少平方分米硬纸板?

(1)提问:求至少要用多少平方分米硬纸板?实际就是求正方体6个面的面积。

(2)谈话:正方体6个面的面积有什么特点?

(3)提问:独立试一试并列式计算。

生:3×3×6=54(平方厘米)

正方体的表面积公式归纳:棱长×棱长×6

(4)师要提醒学生养成认真计算、完整单位和答的好习惯。

3、长方体和正方体的表面积计算方法的有什么相同点

师生总:长方体或者正方体6个面的总面积叫做它的表面积

长方体的表面积=长×宽×2+长×高×2+宽×高×2

或(长×宽+长×高+宽×高)×2

正方体的表面积=棱长×棱长×6

谈话:长方体(或正方体)6个面的总面积,叫作它的表面积。并探讨了长方体和正方体的表面积计算方法。

板书:长方体和正方体的`表面积计算

三、拓展练习

1、选择题

(1)做一个不带盖的长方体铁盒,长5分米,宽3分米,高1分米,至少需要多少平方分米的铁皮?()

A.5×1+(5×3+1×3)×2=41(平方分米)

B.1×3+(5×1+5×3)×2=43(平方分米)

C.5×3+(5×1+3×1)×2=31(平方分米)

(2)棱长之和是24厘米的正方体,它的表面积是多少平方厘米。()

A、36  B、24  C、18

(3)一个棱长的总和是60厘米的正方体,求它的表面积算式是()

A.(60÷8)×(60÷8)×60

B.(60÷4)×(60÷4)×6

C.(60÷12)×(60÷12)×6

D.60×60×60

(4)把一个棱长5厘米的正方体,分割成两个长方体,再在表面涂上漆,这两个长方体涂漆的总面积是多少平方厘米。()

A.125  B.150  C.175  D.200

2、油漆长、宽、高分别为2米、1、5米、1、2米长方体木箱表面,至少要漆多少平方米?

(2×1、5 +2×1、2 + 1、2×1、5)×2=14、4(平方米)

答:至少要漆多14、4平方米。

5、给棱长为8米的立方体房间粉刷四周和屋顶,至少要刷多少平方米?

8×8×5=320(平方米)

答:至少要刷320平方米。

四、作业

练习二第2—4题。

五、全课小结

通过这节课的学习你有什么收获?

《正方体长方体的表面积》教案 13

一、教材分析:

1、内容说明:《长方体和正方体的表面积》是新课标人教版小学数学五年级下册第三单元第二小节的内容。

2、内容解析:这部分内容是在学生认识并掌握了长方体和正方体特征的基础上教学的。计算长方体和正方体的表面积在生活中应用广泛。学习这部分内容可进一步加深学生对长方体和正方体特征的理解,解决一些实际问题。同时,还可以发展学生的空间观念,为日后学习长方体和正方体的其它知识提供必备的条件。

二、学情分析:

五年级学生的思维能力主要是直观形象到逻辑思维的过渡阶段。要想理解长方体表面积的计算方法,必须理解每个面的长和宽各是多少。学生往往因不能根据长方体的长、宽、高想象出每个面的长和宽各是多少,以致计算中出现错误。为此,我在教学中加强了学生的动手操作,并利用多媒体课件辅助教学,突破难点。

三、教学目标:

1、使学生在操做、观察活动中,理解表面积的意义,探索并掌握长方体和正方体表面积的计算方法。

2、使学生能够灵活运用长方体和正方体表面积的知识解决生活中的实际问题。

3、培养学生积极探索、自主参与的意识和能力,进一步发展空间观念。

4、结合具体情境,让学生体会数学与生活的联系。增强学生的学习兴趣与信心。

教学重点:掌握长方体和正方体表面积的计算方法,并能运用所学的知识解决生活中的实际问题。

教学难点:根据长方体的长、宽、高确定每个面的长和宽。

四、教学内容与过程:

教学内容:本节课教学表面积的认识,长方体和正方体表面积的计算两部分知识。结合学生特点,我先让学生认识表面积的概念,再重点探索长方体表面积的计算方法,正方体的表面积计算将由学生自学完成。

教学方法:根据《新课程标准》中所倡导的学习方式是“主动参与、乐于探索、勤于动手”,构建和谐的课堂气氛。确定本课教学方法:操作感知、观察发现、引导探究、自主探究、合作交流。充分激发学生的学习兴趣,增强教学的直观性,有利于落实教学重点,突破难点。

教学过程:

一、创设情景,导入课题:

利用课件呈现情境图。小红要送妈妈一件礼物,他要用包装纸包装盒子,要裁多大纸呢?学生交流后导入课题。

设计意图:新课标强调,教师必须服务于学生的需要。我们应跟据已有的生活经验和实际情况,灵活的使用教材,使学生体会到数学在生活中的广泛应用,激发学习兴趣。

二、动手操作,建立表象:

指导学生动手操作,将长方体纸盒沿棱剪开,再展开,更清楚的看出长方体各面的联系。了解表面积的意义。

设计意图:《新课程标准》指出:“动手操作、自主探索与合作交流是学生学习数学的重要方式”。这一环节的设计,给学生充分的活动时间,探索新知。

三、观察讨论,自主探究:

现代化信息技术是解决数学问题的强有力工具。这一环节是本课的重点,因此,我设计了多媒体课件,更好地揭示知识的发生发展过程及其本质,帮助学生理解知识,发展思维。学生将通过观察、比较、讨论,探索长方体表面积的`计算方法。

在学生理解了表面积的意义后,将学习例题1,既长方体表面积的计算。这时,我将直观形象地向学生展示长方体拆成平面展示图。让学生通过观察比较,很清楚的看到长方体各面的长和宽与长方体长、宽、高的关系,再通过交流,探索长方体表面积的计算方法,完成例1.正方体是特殊的长方体,例2将由学生自主探究,合作完成。

“鼓励算法多样化”是新课程的一个重要理念,在此,我将引导学生思考,激发学生创新,探索不同的计算方法。

四、优化训练,拓展练习:

在学完新知后将完成教材34页、35页的做一做,36页的5题。巩固所学的知识,使学生能灵活运用所学知识解决实际问题,感受到数学在生活中的广泛应用。

五、总结评价,体验成功:

指导学生总结学习的收获,体验成功的喜悦。

设计意图:让学生自我评价,既能梳理所学的知识,又可以培养他们的反思意识。

五、评价和反思:

数学教学中,要从学生已有的知识以及学生熟悉的生活情境出发,这是新大纲中所强调的。遵循新大纲的理念,从生活实际引入,使学生在观察和操作中,形成表象,建立概念。引导学生在探索中发现和总结出计算长方体和正方体表面积的方法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,培养创新意识。

例1:做一个微波炉的包装箱(如下图),至少要用多少平方米的硬纸板?

长0.7米,宽0.5米,高0.4米

上下面:长×宽×2

前后面:长×高×2

左右面:高×宽×2

长方体和正方体的表面积教学反思 14

长方体表面积的计算是在学生认识并掌握了长方体和正方体特征的基础上教学的。本节课让学生自己去尝试,发现长方体表面积的不同计算方法。学生学得轻松、愉快而扎实。让学生经历知识的获得过程,经历思维的形成过程,充分凭借学生的。已有知识,提出问题,解决问题。使学生在讨论、探索、思考、表达、交流中得到发展,课后反馈效果很好。

在思考、讨论中步步为营。在教学中,对长方体表面积的计算,教师从学生已有经验长方体的认识引入,先让学生回顾长方体的特征,如:让学生拿出准备的长方体纸盒,按照一定的位置在六个面上分别表明前、后、左、右、上、下;想一想:根据长方体棱的特征,我们可以八长方体的12条棱分成几组?怎么分?为什么?同桌之间互相指一指长方体的长、宽、高等。在每一个细小问题的思考、讨论、交流中都给学生足够的时间和空间,让学生自主地对每个环节知识的掌握都落实到位,并为后面的知识作好循序渐进的铺垫,让学生在这种环环相扣、步步为营的学习过程中,顺其自然地掌握方法、解决问题、获得发展。

《正方体长方体的表面积》教案 15

教学内容:苏教版六年级数学

教学目标:

1、通过观察、操作等活动认识正方体和正方体的展开图,能在展开图中找到长方体和正方体相对的面,能判断一些平面图形折叠后能否围成长方体、正方体。

2、初步感受平面图形与立体图形的相互转换,发展空间想象能力。

3、进一步感受图形学习的乐趣,增强合作意识。

教学重、难点: 引导学生观察相对的面在不同展开图上的分布情况,发现其中的规律。

教学准备:

教师准备:记号笔、磁铁、长方体和正方体展开图纸12张。

学生准备:一把剪刀、一个长方体、一个正方体纸盒及课本第123页上的图形

教学过程:

课前热身:我们课前先来欣赏一首古诗好吗?出示古诗,全班齐读。

一、激趣导学

1、出示中秋节商店的图片。

师:瞧,再过几天就是中秋节了,商店里卖什么的特别多?(月饼)王老师也想买个月饼礼盒送给家里的老人。

(出示)从数学的角度看,漂亮的包装盒是什么形体的?(长方体、正方体)

2、师:它是怎么做出来的?你知道吗?(出示各种展开的盒子)

(出示课题)。

二、探究解决

(一)初步感知正方体展开图

1、学习例题,出示正方体,依次说出相对的面。

请一个同学上台来剪。

将剪好的展开图放在实物投影上。

问:观察展开图,你发现了什么?

师:同学们想象一下,左右两个面有点像你头上的哪个部位?(两只耳朵)

2、师:这两只耳朵还可以长在哪儿?

师问:想象一下这两个图形沿虚线折叠能围成正方体吗?怎么想的?(出示不对称的图形。)

出不在同一边了,指名学生上来说一说。

引导学生说出:先确定下面,然后在脑海中想象,依次确定后面、上面、右面、下面、左面、前面。

师小结:今后我们在解决此类问题的时候,就可以用边想象边标注的方法。(板书:想象、标注)

(二)、深入认识展开图的规律

1、师:刚才的正方体是按规定的棱展开的,你能沿着其他棱把正方体展开吗?请你用自己动手试试。

活动提示:1、沿棱剪开,不能剪散。2、如果你的展开图黑板上没有,请贴上来。

师:请同学们仔细观察黑板上的展开图有没有重复?将翻转后和旋转后重复的展开图去掉。

师:请同学们数数,一共发现了多少种展开图?

2、面对这些无序的展开图,让我们给它分分类好吗

学生汇报,板书共分四类的'方法。

3、找规律记忆的方法。

4、火眼金睛试一试

5、判断(抢答)

(三)长方体展开图的学习

1、出示:拿一个长方体纸盒,沿着一些棱剪开,看看它的展开图,并与同学交流。

要求:展开后交流一下相对的面有什么特点?

引导总结。

长方体展开图也有11种,出示。

三、拓展延伸

1、"练一练"。

学生打开书独立完成。

2、练习题

(1)出示要求:先想象,后标注,再验证。

(2)学生独立完成。

(3)介绍看互相垂直的棱的方法。

3、思考题:小壁虎的难题

4、欣赏展开的美

其实,许多的立体图形都是可以展开的,让我们一起来欣赏一下好吗?

四、总结升华

出示全课总结让学生说一说

长方体和正方体的表面积教学反思14 16

1、侧重学生解决生活实际问题能力的培养

以前我在上这节课的时候,第1课时是没有教学实际问题中求五个面的情况。我发现在第1课时就解决实际生活中求五个面的问题有两点好处:一是如果第一课时都是让学生求长方体、正方体六个面的,再让学生去解决实际生活中求五个面、四个面的问题,难度会增加。因为学生会受到定势思维的影响;二是提高了学生灵活运用知识解决问题的能力。如2、一个正方体的木箱,棱长4分米,做这个木箱至少用多少平方米木板?和3、老师想做一个玻璃鱼缸,它的'形状是正方体,棱长3分米。制作这个鱼缸至少需要玻璃多少平方分米?这两题让学生一起去做,学生在解题过程中,能提高他们的审题、辨题能力,也是学生思维的操练。

2、旧知的必要复 再通过让学生摸长方体的各个面、闭上眼睛想长方体在学生头脑中建立模型。最后让学生摸长方体的每个面,说出求每个面面积的方法,找出长方体每个面的面积与长方体的长、宽、高之间的关系。突破了本节课的教学难点,使长方体表面积的计算方法水到渠成。

五年级数学教案《长方体的表面积》 17

【教学目标】

[认知目标]:

1. 知道物体外部所有面的总面积叫做它的表面积。

2. 能正确计算正方体和长方体的表面积。

[能力目标]

让学生自主探究正方体和长方体表面积的计算方法。

[情感目标]

通过实际的操作过程,体验学习的快乐。

【教学重点】

掌握与理解正方体、长方体表面积的含义及计算表面积的方法。

【教学难点】

正方体、长方体表面积的推导过程。

【教学准备】

教学课件、长方体、正方体的附页等。

【教学过程】

一、复习导入:

1. 正方形的面积计算公式是什么?

板书:正方形的面积

S = a2

2. 请学生观察老师手中的正方体,回答问题?

(1)正方体有几个面?

(2)有什么特征?

(3)如何计算它们的面积?

3. 这节课让我们学习有关求正方体面积的知识。

4. 揭示课题:正方体的面积

【说明:让学生回忆有关正方体特征的知识,承上启下引导出本堂课的学习内容,激发学生学习的积极性。】

二、探究新知:

(一)正方体的表面积。

1. 小胖将一个棱成为5厘米的正方体盒子沿着棱切开,得到一个正方体表面的展开图。

2. 先仔细观察正方体表面的展开图,然后回答问题?

(1)正方体表面的展开图是由六个什么形状的面组成的?

(2)这六个面的形状都相同吗?

(3)面积都相等吗?

(4)面积的总和是多少?

这个正方体表面的展开图有6个正方形的面,它们的形状都相同,面积都相等。

面积的总和 = 6 × ( 棱成 × 棱长)

= 6 ×( 5 × 5)

= 150( cm3)

3. 正方体有六个大小相同的正方形面,六个面的面积�

4. 小结。

【说明:充分让学生通过已有的知识和经验,小组合作,主动探究求正方体的表面积。】

三、练一练:

(一)求下面正方体的表面积?

1. 正方体的棱长为6dm,求它的表面积。

解: S = 6 a2

=6×6×6

=216(cm2)

答:它的表面积是216平方厘米。

2. 正方体的棱成为7cm,求它的表面积。

一、探一探,练一练:

1. 下面哪些图形能沿虚线相折能围成正方体?先想一想,再利用附页1中的图形试一试。

2. 请学生把附页上的图形剪下后,先估测,然后拼一拼,看看是否能够围成正方体?

3. 交流讨论。(课件演示)

其中:a、c、e、f这四幅能够拼成正方体。

b和d的图形不能拼成正方体。

4.小亚用1立方厘米的正方体积木搭出了一个棱长为3厘米的正方体,并且将它的表面涂上了红色。

(1)三面涂上红色的1立方厘米的正方体积木有多少个?

(2)两面涂上红色的1立方厘米的正方体积木有多少个?

(3)一面涂上红色的1立方厘米的'正方体积木有多少个?

(4)没有面涂上红色的1立方厘米的正方体积木有多少个?

5. 学生讨论交流,请学生可以用小正方体搭一搭,找出规律。

6. 利用课件反馈。

7. 小结。

【说明:这里的正方体的展开图并不是这一节的重点,只是为了能帮助学生推导出表面积,并相应地积累空间经验,并在思路上能从“立体”--“平面”--“立体”。第4题计数时要讲究策略:三面有颜色的在八个角上,共8块;两面有颜色的在各条棱上,每条棱上只有1块,共12块;一面有颜色的在6个面的中心,共6块;没有颜色的,只有1块,在“中心”。】

五、巩固练习:

(一)看图练习:

1. 下面的正方体的棱长为5m,先求它的表面积,再求体积。

2. 下面正方体的棱长为0.7dm,先求它的表面积,再求体积。

3. 下面图形中哪些能围成正方体?哪些不能围成正方体?

(二)拓展小练习:

1. 正方体的表面积是96平方厘米,它的一个面的面积是多少平方厘米?它的棱长是多少厘米?

2. 做一个棱长为7dm的正方体无盖木盒,需要多少平方分米的木板?

3. 用一根长60厘米的铁丝,围成一个正方体的小铁筐,在外面贴上手工纸,需要多少平方厘米的手工纸?它的体积是多少?

4. 用3块棱长为3厘米的小正方体拼成一个长方体,面积减少多少平方厘米?

5. 做一个正方体的玻璃金鱼缸,棱长为80厘米,需要多少平方厘米的玻璃?

6. 正方体的棱长是6cm,它的表面积和体积相比较,情况怎样?

7. 一个棱长为4厘米的正方体,在它的角上挖掉一块棱成为2厘米的小正方体(如下图),它的表面积发生了什么变化?是增加、减少、相等还是无法确定?

8. 小结。

【说明:通过练一练和拓展小练习,让学生进一步巩固求正方体表面积的计算方法。】

六、总结:

师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?你对你今天的学习评价如何?

长方体和正方体的表面积教学反思14 18

“长方体和正方体”一单元结束后,我上了两节复习课。教材中安排第一课内容为长方体和正方体的特征与体积单位;第二课时为表面积与体积。考虑到这样安排第一课内容显的比较少,而第二课练习时间较少,我就作了一下调整,把第二课中的表面积移到了第一课,以使第一课内容充实些,使第二课有更多时间进行拓展延伸,从而提高复习的效率。

在“长方体和正方体的特征与表面积”这课中,对于第一板块的复习,主要以引导学生自己回忆与整理为主。课的一开始,即明确了本课复习的。目标,然后让学生对照复习,归纳长方体与正方体的特征,小组内先行交流,互相补充。汇报时,教师板书成表格形式,并要求学生口述时配合手的动作。这样一方面避免整理时的零敲碎打,提高时间利用率,另一方面使得所复习知识更为系统化,直观化,有利于掌握、巩固。对后面的多练留出足够的时间。

在第二板块练习中,我注重了练习的层次性。对表面积计算,较之基本计算方法,我更重视了对方法本身意义的理解。让学生列出求表面积的算式,不计算,但要写出算式中每步求的是什么,这样就为后面解决相关实际问题做好了准备。在应用练习中,我让学生自己举出生活中的相关实例,帮助他们补条件后再组织练习,这样也比教师直接出示题目对学生更有吸引力。

纵观这一课,我尽量避免了对学生发言无价值的重复与不必要的讲授,而在关键处适度点拨,突出要点,在学生掌握较好之处省下时间用以拓展练习,基本做到了精讲多练。

五年级数学教案《长方体的表面积》 19

目标

①使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法。

②在引导学生理解和推导长方体表面积计算方法的过程中,培养学生的抽象概括能力、推理能力和思维的灵活性,同时发展他们的空间观念。

教学及训练

教学重点:

表面积的意义。

教学难点

长方体表面积的计算方法。

仪器

教具

教师准备:长方体和正方体表面积展开的教具、投影仪。

学生准备:长方体和正方体纸盒各一个。

教学内容和过程

教学札记

一、创设情境

1、说出长方形面积的计算公式。

2、看图回答。

(1)指出这个长方体的长、宽、高各是多少?

(2)哪些面的面积相等?

(3)填空:

上、下两个面的长是宽是。

这个长方体左、右两个面的长是宽是。

前、后两个面的长是宽是。

3、想一想。长方体和正方体都有几个面?

4.老师现在做了一个“长5㎝,宽4㎝,高3㎝”的长方体架,要在它的六个面上贴上薄塑料片,你说应该准备多少平方厘米的塑料片呢?

二、实践探索

1.个别学习--表面积的概念

(1)老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、“左”、“右”、“前”、“后”标在6个面上。

(2)沿着长方体和正方体的棱剪开并展平。

(3)你知道长方体或者正方体6个面的总面积叫做它的什么吗?

学生试着说一说。

2.小组合作学习--计算塑料片的面积

(1)想:这个问题,实际上就是要我们求什么?

使学生明确:就是计算这个长方体的表面积。

(2)学生分组研究计算的。方法。

(3)找几名代表说一说所在小组的意见

解法(一):(是分别算出上、下,前、后,左、右面的面积之和,然后算总和。)

5×4×2+5×3×2+3×4×2

=40+30+24

=94(平方厘米)

解法(二):(是先算出上、前、左这三个面的面积之和,再乘以2)

(5×4+5×3+3×4)×2

=47×2

=94(平方厘米)

(4)比较上面两种解法有什么不同?它们之间有什么联系?

三、巩固练习

做第9页的“练一练”,学生独立列式算出后集体订正。

四、课堂小结

你发现长方体表面积的计算方法了吗?

结论:

=长×宽×2+长×高×2+宽×高×2

长方体的表面积

=(长×宽+长×高+宽×高)×2

五、课堂练习

做练习二的第1、2题,学生口答,学生讲评。

七、课后实践

做练习二的第3、4题在作业本上。

长方体的表面积

=长×宽×2+长×高×2+宽×高×2

长方体

的表面积

=(长×宽+长×高+宽×高)×2

长方体和正方体的表面积教学反思 20

“长方体和正方体的表面积”教学内容,是在学生初步认识了长方体和正方体特征,知道它们都有6个面、12条棱、8个顶点。长方体的每个面都是长方形,相对的面的形状相同,大小相等;12条棱分为3组;相交于一个顶点的三条棱的长,分别叫做长方体的长、宽、高,以及正方体的6个面都是面积相等的正方形的基础上而学习的。对于表面积的概念与平面图形的面积,既有联系又有区别。同时是后继学习的基础。

我认为表面积的概念的学习,要是通过学生对长方体特点的感知并懂得表面积的意义基础上,进行学习。学生虽然会正确求长方形的面积,但要求表面积,这是一个质的。飞跃。为什么呢,因为是从平面到立体,从二维到三维。成人看似简单,而对小学生却有一定的难度。同时,小学生往往习惯于迁移,长方形面积明明是长×宽,而现在怎么变成长×高、宽×高了呢?这对于一部分学生来说,肯定存有困惑。所以要把长方体展开,变6个面为一个面,这种转化不是老师来完成,而是在学生思维中展开,因此,在前一课时就应打下一定基础:上下面:前后面、左右面等概念!对立面相等等知识点。再通过观察长方体的每一个面的面积任何计算!有没有简便方法等。

在教学中,激发学生的学习积极性显得尤为重要!思维的活跃,积极的学习是本堂课成功的的关键。

不足之处:在教学中、思维的发散显得不够!以至于在后来的无盖,甚至四个面计算中部分同学不理解!

非常遗憾、值得反思!

《正方体长方体的表面积》教案 21

教学内容

苏教版《义务教育课程标准实验教科书 数学》六年级(上册)第15页例4及随后的试一试练一练,完成练习四第1~5题。

教学目标

1. 使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法,能解决一些与表面积计算有关的简单实际问题。

2. 使学生在活动中进一步积累空间与图形的学习经验,初步体会长方体和正方体表面积计算在日常生活中的广泛应用,感受表面积计算方法的实际价值,增强空间观念,发展思维能力。

3. 使学生在探索和发现长方体和正方体表面积计算方法的过程中,培养对数学学习的兴趣,树立学好数学的信心。

教学过程

一、 创设情境

谈话:昨天,老师要求同学们从家里找一个长方体纸盒带到学校来,都带来了吗?(带来了)请大家先拿出自己带来的长方体纸盒,用尺量一量,你带来的长方体纸盒的长、宽、高分别是多少?把测量的数据记录在练习纸上,并按要求完成下面的填空。

出示练习四第1题的填空部分。

学生测量数据并完成填空,组织交流。

谈话:今天这节课,我们就来研究同学们手中的纸盒,讨论一下,你打算从哪个方面来研究这些纸盒。

反馈:� 今天我们选择其中的一个来研究,就选做这些纸盒需要多少硬纸板来研究吧。

[说明:让学生测量自己带来的长方体纸盒的长、宽、高,为后续探索长方体表面积计算方法的活动提供了具体材料,有利于学生进一步展开自主的探索活动;让学生算一算长方体每个面的面积,为后面学生主动发现长方体表面积的简便算法做了必要的铺垫;讨论你打算从哪些方面来研究长方体的纸盒,为学生自主地提出问题提供了机会,也教给学生一些问题解决的方法;问题由学生自己提出,研究方向由学生自己确定,调动了学生参与学习活动的积极性和主动性。]

二、 自主探索

1. 探索长方体表面积的计算方法。

谈话:确定了研究和探索的方向,下面要思考的问题就应该是用怎样方法来解决这个问题。怎样计算做一个纸盒需要多少硬纸板呢?请同学们以自己带来的纸盒为例,按下面的要求开展研究活动。

出示活动要求:

(1) 独立思考,想办法求出做自己的这个纸盒需要多少硬纸板。

(2) 把自己的计算方法和小组内的同学交流。

(3) 小组讨论:怎样计算做一个长方体纸盒需要多少硬纸板?

学生按要求活动,教师参与学生的活动。

学生可能出现以下几种情况:(1) 把纸盒拆开,再计算每个面的面积。(2)先算出每个面的面积,再把6个面加起来。(3) 在计算6个面的面积时,发现计算的方法不够简便,改为分别求出3组相对的面的和,再相加。(4) 分别求出每组相对的面中一个面的面积,相加后再乘2。

[说明:探索长方体表面积的计算方法是本节课的教学重点,也是本节课最重要的环节。为了让学生扎实有效地参与到学习活动中来,本环节设计了三个层次的活动:一是让学生通过独立思考,找出计算做一个长方体纸盒需要多少硬纸板的方法。开放的活动要求,为学生提供了充足的探索空间,学生能够根据自己已有的经验和策略,找到自己能够理解的富有个性的解决问题的方法。二是让学生把自己的计算方法和小组内的同学交流,可以在小组内实现资源共享,计算方法不够简便的学生能及时得到他人的启发,主动修正自己的算法。三是让学生在小组内讨论怎样计算做一个长方体纸盒需要的硬纸板,有利于学生主动地把个别经验上升为更具有普遍意义的结论。]

引导:每个小组都完成自己的任务了吗?再请同学们在小组里把你们小组刚才的研究过程整理一下。看一看,你们小组的同学想出了几种求做一个长方体纸盒需要多少硬纸板的方法,在这些方法中,哪种方法是比较简便的,然后再讨论一下,你们准备用怎样的形式向大家汇报。

[说明:学生活动后,并没有马上组织学生反馈,而是让学生以小组为单位,对前面的小组活动进行整理和反思,目的是让学生对自己的活动过程和结果进行更深刻的再思考,有利于培养学生有条理地思考的习惯,提高下一环节反馈与交流的质量。]

反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问。

学生按小组带着自己的纸盒和计算过程,到实物展示台上汇报。[着重引导学生体会两点:(1) 求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积;(2) 计算长方体6个面的总面积,先求出每组相对的面中一个面的面积,相加后再乘2比较简便。]

提问:求做一个长方体纸盒需要多少硬纸板,就是求什么?(长方体纸盒6个面的总面积;长方体纸盒的表面积。)怎样计算比较简便?

小结并板书:长方体6个面的总面积,叫做它的表面积。

提问:刚才我们通过研究做一个长方体纸盒需要多少硬纸板,认识了什么是长方体的表面积,还总结了计算长方体表面积的计算方法,你有什么问题想问吗?

学生提出问题,师生共同帮助解答。

如果学生提出:做一个长方体纸盒还需要留出一些连接的地� 所以,实际问题中经常出现至少需要用多少硬纸板这样的问题。

如果有学生提出:有些纸盒只有5个面怎么办?则让学生说一说怎样算,再告诉学生,应用长方体表面积计算方法解决问题时,经常会遇到这样的情况,下节课我们将专门研究这样的问题。

[说明:让学生提出自己感到困惑的。问题,并对学生可能提出的问题进行充分预设,有利于培养学生质疑的习惯和意识,使学生的思维逐步走向深刻。]

2. 探索正方体表面积的计算方法。

出示:试一试。

提问:求做这个正方体纸盒至少要用多少平方分米的硬纸板,就是求什么?

再问:怎样求正方体的表面积?自己在下面试一试。

学生独立解题,教师巡视。

反馈:你是怎样算的?为什么可以这样算?

小结:通过刚才的学习,我们学会了求长方体、正方体表面积的方法,你能说说什么是长方体或正方体的表面积吗?

根据学生回答,完成板书:长方体(或正方体)6个面的总面积,叫做它的表面积。

三、 巩固练习

1. 完成练一练。

出示第15页的练一练。

提问:求长方体或正方体的表面积,就是求什么?

学生独立练习,并组织交流。

2. 完成练习四第2题。

出示题目(长6 cm、宽5 cm、高3 cm的长方体)。

提问:第一个问题要求的是什么?第二个问题呢?

学生练习后,提问:通过这道题的练习,你想到了什么?(求长方体的表面积,先求出每组相对的面中一个面的面积,再用三个面的面积和乘2,比较简便。)

3. 完成练习四第3、4题。

学生独立完成,再组织反馈。

4. 完成练习四第5题。

先让学生独立填表,再指名把填的结果拿到实物展示台上交流。着重让学生说一说:你是怎样判断每一个物体的形状的?计算第二个长方体的表面积时,你发现了什么?

四、 课堂总结

提问:通过本节课的学习,你有哪些收获?还有什么不懂的问题?

五、 课外延伸

出示练习四第6题。

提问:我们知道求长方体或正方体的表面积,就是求长方体或正方体6个面的总面积。怎样解决这里的问题呢?有兴趣的同学课后可以到生活中找一些这样的例子,再想一想怎样解决这样的问题,我们下节课将专门研究。

长方体和正方体的表面积教学反思 22

《长方体和正方体的表面积》这部分内容,是人教版五年级数学下册第3单元《长方体和正方体》的一个重点,也是难点。它是在学生认识掌握了长方体和正方体特征的基础上教学的。学习的难点在于,学生刚接触立体图形,空间观念不强,往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过剪一剪、看一看、比一比 ,自主探究等方式来认识概念,理解概念。

我在设计《长方体和正方体的表面积》这节课时,考虑到班级学生较多,所以活动主要以小组进行。思路主要是沿着什么是长方体的表面积——怎样求长方体的表面积——长方体的表面积在生活中的应用这样一条线来让学生自主探究的`。在小组交流的过程中,我发现对教材的深度钻研和对学生的预设显得尤为重要。如课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积和再乘2,但是有的学生只说出了其中的一种简便情况。如果我在课前有更深入的研究,还可拓展学生思维,引导学生找出另外的方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。另外在让学生做当堂检测第三关时,我发现有学生做错了,只是把错题通过投影仪呈现了出来,由于受条件限制,未能结合原题给学生好好评讲,这一点比较遗憾。

实践表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性 。

五年级数学教案《长方体的表面积》 23

教学目标

1、与技能

了解并熟记长方体表面积的概念长方体的面数,熟练计算长方形面积。

2、知识与方法

掌握计算长方体表面积的几种不同方法。

3、情感态度和价值观

通过对长方体表面积的计算,提高空间构想思维以及解决现实生活中实际问题。

教学过程

一、知识回顾

1、方体有哪些特点:8个顶点,6个面,12条棱。

2、长为3、宽为4的长方形,它的面积是12。

3、长为10、宽为8的长方形,它的面积是80。

4、边长为5的正方形,它的面积是25。

二、新课引入

1、计算

这是一个长方体的展开图,填写下列表格。

前、后两面的面积和70左、右两面的面积和42上、下两面的面积和30长方体的表面积142

2、你能想出别的方法计算上述展开图的面积吗?

3、一个边长为5的正方体,它的表面积如何计算?

(正方体六个面的面积都相等)

4、总结归纳

(1)长方体六个面的面积之和叫做它的表面积。

(2)长方体相对的面的面积相等。

5、练习

在下面的。长方体展开图上,先把相对的面涂上相同的颜色,再标出每个面的长和宽。(单位:cm)

说一说,如何得到这个长方体的面积。

解:

三、例与练

例一:做一个长54cm、宽50cm、高95cm的洗衣机包装箱,需要多大面积的硬纸板?

解:

答:洗衣机包装箱需要12580cm2的硬纸板。

例二:求下列图形的表面积。(单位:cm)

例三:制作一个棱长为35cm的正方体无盖玻璃鱼缸,至少需要多大面积的玻璃?

解:

答:鱼缸至少需要6125cm2的玻璃

练习:淘气的房间长3.5m、宽3m、高3m。除去门窗4.5cm2,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?

解:

答:这个房间至少需要45cm2的墙纸。

四、课堂小结

五、扩展延伸

如图,包装一个长方体纸盒,选择下列哪种尺寸的包装纸比较合适?与同伴交流你的想法。

解:

答:选②更加合适。

一键复制全文保存为WORD
相关文章