学习物理心得体会【16篇】

总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,因此好好准备一份总结吧。那么总结有什么格式呢?

物理学习心得 1

暑假中一起去津参加了由新教材编写者之一苏明义老师讲解《北师大版物理》修订说明的讲座。通过学习我深深认识到在初中阶段,物理课程不仅应该注重科学知识的传授和技能的训练,注重将物理科学的新成就及其对人类文明的影响等纳入课程,而且还应重视对学生终身学习愿望、科学探究能力、创新意识以及科学精神的培养。因此我们的物理课程的构建应注重让学生经历从自然到物理、从生活到物理的认识过程,经历基本的科学探究实践,注重物理学科与其他学科的融合,使学生得到全面发展。

一、对课程性质的重新认识

物理学由实验和理论两部分组成。物理学实验是我们认识世界的重要活动,是进行科学研究的基础;物理学理论则是人类对自然界最基本、最普遍规律的认识和概括。初中学习阶段的物理课程要让学生学习初步的物理知识与技能,经历基本的科学探究过程,受到科学态度和科学精神的教育。而新课标更强调了探究实验在物理教学中的重要性。

在初中学习阶段,物理课程的价值主要表现在以下几个方面。

(1)通过从自然、生活到物理的认识过程,激发学生的求知欲,让学生领略自然现象中的美妙与和谐,培养学生的探索兴趣。

(2)通过基本知识的学习与技能的训练,让学生初步了解自然界的基本规律,使学生能应用基本规律来解释生活中的物理现象。

(3)通过科学探究,使学生经历基本的科学探究过程,学习科学探究方法,发展初步的科学探究能力,来解决一些简单的物理现象的研究。

(4)通过科学想像与科学推理方法的结合,发展学生的想像力和分析概括能力,使学生养成良好的思维习惯,具有基本的推理分析概括能力。

二、对课程基本理念的新认识

(1)注重全体学生的发展,改变学科本位的观念

初中阶段的物理课程应以提高全体学生的科学素质为主要目标,满足每个学生发展的基本需求,改变学科本位的观念,全面提高学生的科学素质。在教学中我们更应该注意因材施教,差异教学。

(2)从生活走向物理,从物理走向社会

初中阶段的物理课程贴近学生生活,符合学生认知特点,激发并保持学生的学习兴趣,通过探索物理现象,揭示隐藏其中的物理规律,并将其应用于生产生活实际,培养学生的探索乐趣、良好的`思维、解题习惯和初步的科学实践能力。

(3)注重科学探究,提倡学习方式多样化

物理课程改变了过分强调知识传承的倾向,让学生经历科学探究过程,学习科学研究方法,培养学生的探索精神、实践能力以及创新意识。改革以书本为主、实验为辅的教学模式,在日常教学中可以多采用新方法、新途径进行教学,多样化地教学。

(4)注意学科渗透,关心科技发展

结合科学教育的理论和实践,构建新的物理课程体系,注意不同学科间知识与研究方法的联系与渗透,使学生关心科学技术的新进展和新思想,了解自然界事物的相互联系。

(5)构建新的评价体系

物理课程应该改革单一的以甄别和选拔为目的的评价体系。在新的评价观念指导下,注重过程评价与结果评价结合,构建多元化、发展性的评价体系,以促进学生素质的全面提高和教师的不断进步。

作为中学物理教师,我们应积极应对物理新课程带来的挑战,不断提高自己的专业素质,以便适应物理新课程的实施。

初中物理知识点 2

颜色

1、白光的组成:红,橙,黄,绿,蓝,靛,紫。

色光的三原色:红,绿,蓝。

颜料的三原色:品红,黄,青。

2、看不见的光:红外线,紫外线。

提醒大家:色光的三原色请大家仔细记忆了。

透镜

透镜:透明物质制成(一般是玻璃),至少有一个表面是球面的一部分,对光起折射作用的光学元件。

分类:1、凸透镜:边缘薄,中央厚。2、凹透镜:边缘厚,中央薄。

主光轴:通过两个球心的直线。

光心:主光轴上有个特殊的点,通过它的光线传播方向不变。(透镜中心可认为是光心)

焦点:凸透镜能使跟主轴平行的光线会聚在主光轴上的一点,这点叫透镜的焦点,用"F"表示

虚焦点:跟主光轴平行的光线经凹透镜后变得发散,发散光线的反向延长线相交在主光轴上一点,这一点不是实际光线的会聚点,所以叫虚焦点。

焦距:焦点到光心的距离叫焦距,用" f "表示。

每个透镜都有两个焦点、焦距和一个光心。

透镜对光的作用:

凸透镜:对光起会聚作用。

凹透镜:对光起发散作用。

探究凸透镜成像规律

实验:从左向右依次放置蜡烛、凸透镜、光屏。1、调整它们的位置,使三者在同一直线(光具座不用);2、调整它们,使烛焰的中心、凸透镜的中心、光屏的中心在同一高度。

凸透镜成像规律:

物距(u) 像距( υ ) 像的性质 应用

u>2f f<υ<2f 倒立缩小实像 照相机

u = 2f υ= 2f 倒立等大实像 (实像大小转折)

f

u = f 不成像 (像的虚实转折点)

u u 正立放大虚像 放大镜

凸透镜成像规律口决记忆法

口决一:"一焦(点)分虚实,二焦(距)分大小;虚像同侧正;实像异侧倒,物远像变小"。

口决二:

物远实像小而近,物近实像大而远,

如果物放焦点内,正立放大虚像现;

幻灯放像像好大,物处一焦二焦间,

相机缩你小不点,物处二倍焦距远。

口决三:

凸透镜,本领大,照相、幻灯和放大;

二倍焦外倒实小,二倍焦内倒实大;

若是物放焦点内,像物同侧虚像大;

一条规律记在心,物近像远像变大。

注1:为了使幕上的像"正立"(朝上),幻灯片要倒着插。

注2:照相机的镜头相当于一个凸透镜,暗箱中的胶片相当于光屏,我们调节调焦环,并非调焦距,而是调镜头到胶片的距离,物离镜头越远,胶片就应靠近镜头。

眼睛和眼镜

眼睛:眼睛中晶状体和角膜的共同作用相当于凸透镜,它把来自物体的光会聚在视网膜上,形成物体的像。视网膜上的视神经细胞受到光的刺激,把信号传输给大脑。看远处物体时,睫状肌放松,晶状体比较薄(焦距长,偏折弱)。看近处物体时,睫状肌收缩,晶状体比较厚(焦距短,偏折强)。

近视的表现:能看清近处的物体,看不清远处的物体。

近视的原因:晶状体太厚,折光能力太强,或眼球前后方向太长,致使远处物体的像成在视网膜前。

近视的矫治:佩戴凹透镜。

远视的表现:能看清远处的物体,看不清近处的物体。

远视的原因:晶状体太薄,折光能力太弱,或眼球前后方向太短,致使远处物体的像成在视网膜后。

远视的矫治:佩戴凸透镜。

眼镜的度数:100×焦距的倒数。

照相机和投影仪

照相机:

1、镜头是凸透镜;

2、物体到透镜的距离(物距)大于二倍焦距,成的是倒立、缩小的实像;

投影仪:

1、投影仪的镜头是凸透镜;

2、投影仪的平面镜的作用是改变光的传播方向;

注意:照相机、投影仪要使像变大,应该让透镜靠近物体,远离胶卷、屏幕。

3、物体到透镜的距离(物距)小于二倍焦距,大于一倍焦距,成的是倒立、放大的实像;

显微镜和望远镜

显微镜由目镜和物镜组成,物镜、目镜都是凸透镜,它们使物体两次放大;

望远镜由目镜和物镜组成,物镜使物体成缩小、倒立的实像,目镜相当于放大镜,成放大的像;

希望上面对显微镜和望远镜知识点的讲解学习,同学们都能很好的掌握,相信同学们会考出很好的成绩的哦,好好学习吧。

物理知识点汇总 3

高三物理加速度知识点如下:

加速度是速度变化量与发生这一变化所用时间的比值(△V/△t),是描述物体速度改变快慢的物理量,通常用a表示,单位是m/s^2。加速度是矢量,它的方向是物体速度变化(量)的方向,与合外力的方向相同。

加速度是物理学中的一个物理量,是一个矢量,主要应用于经典物理当中,一般用字母a表示,在国际单位制中的单位为米每二次方秒。加速度是速度矢量关于时间的变化率,描述速度的方向和大小变化的快慢。

加速度由力引起,在经典力学 在惯性参考系中的某个参考系的加速度在该参考系中表现为惯性力。加速度也与多种效应直接或间接相关,比如电磁辐射。

在本页面中会多次用到“质点”这一物理概念。简单地说,当被研究的运动物体的大小和形状不对实验造成影响或影响很小时,可以把这个物体抽象成一个有质量但不存在大小、形状的点。是一个理想化的物理模型。为了描述物体运动速度变化的快慢这一特征,我们引入加速度这一概念。

名称:加速度

1.定义:速度的变化量Δv与发生这一变化所用时间Δt的比值。

2.公式 :a=Δv/Δt

3.单位:m/s^2(米每二次方秒)

4.加速度是矢量,既有大小又有方向。加速度的大小等于单位时间内速度的增加量;加速度的方向与速度变化量ΔV方向始终相同。特别,在直线运动中,如果速度增加,加速度的方向与速度相同;如果速度减小,加速度的方向与速度相反。

5. 物理意义:表示质点速度变化的快慢的物理量。

举例:假如两辆汽车开始静止,均匀地加速后,达到10m/s的速度,A车花了10s,而B车只用了5s。它们的速度都从0m/s变为10m/s,速度改变了10m/s。所以它们的速度变化量是一样的。但是很明显,B车变化得更快一样。我们用加速度来描述这个现象:B车的加速度(a=Δv/t,其中的Δv是速度变化量)>

加速度计构造的类型

A车的加速度。

显然,当速度变化量一样的时候,花时间较少的B车,加速度更大。也就说B车的启动性能相对A车好一些。因此,加速度是表示速度变化的快慢的物理量。

注意:1。当物体的加速度保持大小和方向不变时,物体就做匀变速运动。如自由落体运动,平抛运动等。

当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运动。如竖直上抛运动。

当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运

2.加速度可由速度的变化和时间来计算,但决定加速度的因素是物体所受合力F

和物体的质量M。

3.加速度与速度无必然联系,加速度很大时,速度可以很小;速度很大时,加速度也可以很小。例如:炮弹在发射的瞬间,速度为0,加速度非常大;以高速直线匀速行驶的赛车,速度很大,但是由于是匀速行驶,速度的变化量是零,因此它的加速度为零。

4.加速度为零时,物体静止或做匀速直线运动(相对于同一参考系)。任何复杂的运动都可以看作是无数的匀速直线运动和匀加速运动的合成。

5.加速度因参考系(参照物)选取的不同而不同,一般取地面为参考系。

6.当运动的方向与加速度的方向之间的夹角小于90°时,即做加速运动,加速度是正数;反之则为负数。

特别地,当运动的方向与加速度的方向之间的夹角恰好等于90°时,物体既不加速也不减速,而是匀速率的运动。如匀速圆周运动。

7.力是物体产生加速度的原因,物体受到外力的作用就产生加速度,或者说力是物体速度变化的原因。说明

当物体做加速运动(如自由落体运动)时,加速度为正值;当物体做减速运动(如竖直上抛运动)时,加速度为负值。

8.加速度的大小比较只比较其绝对值。物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。

向心加速度

向心加速度(匀速圆周运动中的加速度)的计算公式:

a=rω^2=v^2/r

说明:a就是向心加速度,推导过程并不简单,但可以说仍在高

科里奥利加速度

中生理解范围内,这里略去了。r是圆周运动的半径,v是速度(特指线速度)。ω(就是欧姆的小写)是角速度。

这里有:v=ωr.

1.匀速圆周运动并不是真正的匀速运动,因为它的速度方向在不断的变化,所以说匀速圆周运动只是匀速率运动的一种。至于说为什么叫他匀速圆周运动呢?可能是大家说惯了不愿意换了吧。

2.匀速圆周运动的向心加速度总是指向圆心,即不改变速度的大小只是不断地改变着速度的方向。

重力加速度

地球表面附近的物体因受重力产生的加速度叫做重力加速度,也叫自由落体加速度,用g表示。

重力加速度g的方向总是竖直向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。重力加速度的数值随海拔高度增大而减小。当物体距地面高度远远小于地球半径时,g变化不大。而离地面高度较大时,重力加速度g数值显著减小,此时不能认为g为常数

距离面同一高度的重力加速度,也会随着纬度的升高而变大。由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也达到最大。

由于g随纬度变化不大,因此国际上将在纬度45°的海平面精确测得物体的重力加速度g=9.80665m/s^2;作为重力加速度的标准值。在解决地球表面附近的问题中,通常将g作为常数,在一般计算中可以取g=9.80m/s^2。理论分析及精确实验都表明,随纬度增大,重力加速度g的数值逐渐增大。如:

赤道g=9.780m/s^2

广州g=9.788m/s^2

武汉g=9.794m/s^2

上海g=9.794m/s^2

东京g=9.798m/s^2

北京g=9.801m/s^2

纽约g=9.803m/s^2

莫斯科g=9.816m/s^2

北极地区g=9.832m/s^2

注:月球面的重力加速度约为1.62 m/s^2,约为地球重力的六分之一。

匀加速直线动动的公式

1.匀加速直线运动的位移公式:

s=V0t+(at^2)/2=(vt^2-v0^2)/2a=(v0+vt)t/2

2.匀加速直线运动的速度公式:

vt=v0+at

3.匀加速直线运动的平均速度(也是中间时刻的瞬时速度):

v=(v0+vt)/2

其中v0为初速度,vt为t时刻的速度,又称末速度。

4.匀加速度直线运动的几个重要推论:

(1) V末^2 - V初^2 = 2as (以初速度� )

(2) A B段中间时刻的即时速度:

Vt/ 2 = (v初+v末)/2

(3) AB段位移中点的即时速度:

Vs/2 = [(v末^2+v初^2)/2]^(1/2)

(4) 初速为零的匀加速直线运动,在1s ,2s,3s……ns内的位移之比为1^2:2^2:3^2……:n^2;

(5) 在第1s 内,第 2s内,第3s内……第ns内的位移之比为1:3:5……:(2n-1);

(6)在第1米内,第2米内,第3米内……第n米内的时间之比为1:2^(1/2):3^(1/2):……:n^(1/n)

(7) 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:△s = aT^2(a一匀变速直线运动的加速度 T一每个时间间隔的时间)。

(8)竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO,加速度为g的匀减速直线运动。

加速度- 加速运动与减速运动

物体运动时,如果加速度不为零,则处于加速状态。若加速度大于零,则为正加速;若加速度小于零,则为负加速(即速度减至0后反向加速)。(提示:物理中的符号不同于数学中的符号,在+、-号只代表是的标量,在物理中+、-号部分代表单纯的标量,还有部分还代表的像方向啦什么的矢量)

V=v末—v初

加速度公式:a=△V/△t

加速度- 曲线加速运动

在加速度保持不变的时候,物体也有可能做曲线运动。比如,当你把一个物体沿水平方向用力抛出时,你会发现,这个物体离开桌面以后,在空中划过一条曲线,落在了地上。

物体在出手以后,受到的只有竖直向下的重力,因此加速度的方向和大小都不改变。但是物体由于惯性还在水平方向上以出手速度运动。这时,物体的速度方向与加速度方向就不在同一直线上了。物体就会往力的方向偏转,划过一条往地面方向偏转的曲线。

但是这个时候,由于重力大小不变,因此加速度大小也不变。物体仍然做的是匀加速运动,但不过是匀加速曲线运动。

加速度 - 小问题——加速度单位的来历

根据我们高中的课本描述,有加速度a=(Δv)/(Δt)=(v1-v2)/t, 因为速度(v)的单位是m/s,时间(t)的单位是s,于是将m/s 与 s 相除,得到的就是它的单位: m/s^2.

高中物理知识点整理 4

一、质点的运动(1)------直线运动

1)匀变速直线运动

1、平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as

3、中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5、中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

7、加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8、实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

9、主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动

1、初速度Vo=02.末速度Vt=gt

3、下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

3、有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)

5、往返时间t=2Vo/g (从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力

1)平抛运动

1、水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3、水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7、合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

8、水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;

(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1、线速度V=s/t=2πr/T 2.角速度ω=/t=2π/T=2πf

3、向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5、周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8、主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1、开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2、万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

3、天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4、卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5、第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6、地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

三、力(常见的力、力的合成与分解)

1)常见的力

1、重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2、胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3、滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4、静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

5、万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

6、静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)

7、电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8、安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9、洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

注:

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μFN,一般视为fm≈μFN;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1、同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2、互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3、合力大小范围:|F1-F2|≤F≤|F1+F2|

4、力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学(运动和力)

1、牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2、牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3、牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4、共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5、超重:FN>G,失重:FN<g p="" {加速度方向向下,均失重,加速度方向向上,均超重}<="">

6、牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

五、振动和波(机械振动与机械振动的传播)

1、简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

2、单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

3、受迫振动频率特点:f=f驱动力

4、发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

5、机械波、横波、纵波〔见第二册P2〕

6、波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

7、声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

8、波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

9、波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

10、多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}

注:

(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

(4)干涉与衍射是波特有的;

(5)振动图象与波动图象;

(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

六、冲量与动量(物体的受力与动量的变化)

1、动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

3、冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

4、动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}

5、动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′

6、弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}

7、非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}

8、完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

9、物体m1以v1初速度与静止的物体m2发生弹性正碰:

v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)

10、由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

11、子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}

七、功和能(功是能量转化的量度)

1、功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

2、重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3、电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

4、电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

5、功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

6、汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}

7、汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

8、电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

9、焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

10、纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

11、动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

12、重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13、电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

14、动能定理(对物体做正功,物体的动能增加):

W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

15、机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

16、重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

八、分子动理论、能量守恒定律

1、阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

2、油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}

3、分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4、分子间的引力和斥力(1)r<r0,f引<f斥,f分子力表现为斥力< p="">

(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

(3)r>r0,f引>f斥,F分子力表现为引力

(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

5、热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),

W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

6、热力学第二定律

克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

7、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

注:

(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

3)分子间的。引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大δu>0;吸收热量,Q>0

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

九、气体的性质

1、气体的状态参量:

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

2、气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3、理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

注:

(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

十、电场

1、两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

2、库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3、电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4、真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

5、匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

6、电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7、电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8、电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9、电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10、电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}

11、电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

12、电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

13、平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

常见电容器〔见第二册P111〕

14、带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

注:

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线�

十一、恒定电流

1、电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2、欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3、电阻、电阻定律:R=L/S{:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

4、闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5、电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6、焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7、纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

8、电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9、电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)

电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

电流关系 I总=I1=I2=I3 I并=I1+I2+I3+

电压关系 U总=U1+U2+U3+ U总=U1=U2=U3

功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+

十二、磁场

1、磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A?m

2、安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

3、洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

4、在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:(a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

十三、电磁感应

1、[感应电动势的大小计算公式]

1)E=nΔ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,Δ/Δt:磁通量的变化率}

2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}

3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}

2、磁通量=BS {:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

3、感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

*4.自感电动势E自=nΔ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

十四、交变电流(正弦式交变电流)

1、电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)

2、电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

3、正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

4、理想变压器原副线圈中的电压与电流及功率关系

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

5、在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

6、公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

S:线圈的面积(m2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。

注:

(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;

(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;

(5)其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。

十五、光的反射和折射(几何光学)

1、反射定律α=i {α;反射角,i:入射角}

2、绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}

3、全反射:

1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n

2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角

初中物理知识点 5

电功率物理学名词,电流在单位时间内做的功叫做电功率。是用来表示消耗电能的快慢的物理量,用P表示,它的单位是瓦特(Watt),简称瓦,符号是W。电功率计算公式1.P=W/t主要适用于已知电能和时间求功率2.P=UI主要适用于已知电压和电流求功率3.P=U^2/R=I^2R主要适用于纯电阻电路一般用于并联电路或电压和电阻中有一个变量求解电功率4.P=I^2R主要用于纯电阻电路一般用于串联

目录

1、电功率

2、电功率计算公式

3、电功率单位

1.电功率

物理学名词,电流在单位时间内做的功叫做电功率。是用来表示消耗电能的快慢的物理量,用P表示,它的单位是瓦特(Watt),简称瓦,符号是W。

2.电功率计算公式

1.P=W/t主要适用于已知电能和时间求功率

2.P=UI主要适用于已知电压和电流求功率

3.P=U^2/R=I^2R主要适用于纯电阻电路

一般用于并联电路或电压和电阻中有一个变量求解电功率

4.P=I^2R主要用于纯电阻电路

一般用于串联电路或电流和电阻中有一个变量求解电功率

5.P=n/Nt主要适用于有电能表和钟表求解电功率

t-----用电器单独工作的时间,单位为小时

n----用电器单独工作t时间内电能表转盘转过的转数

N----电能表铭牌上每消耗1千瓦时电能表转盘转过的转数

6、功率的比例关系

串联电路:P/P'=R/R'P总=P'*P''/P'+P"并联电路:P/P'=R'/R P总=P'+P"

3.电功率单位

瓦特,简称瓦,符号W

1瓦特(1W)=1焦/秒(1J/s)=1伏·安(V·A)

①W—电功—焦耳(J)②1kw·h=3.6×10^6J

t—时间—秒(s)t=1小时(h)=3600秒(s)

P—用电器的功率—瓦特(W)P=1KW=1000W

P=W/t

(两套单位,根据不同需要,选择合适的单位进行计算)

初中物理知识点 6

1、平面镜成像原理

平面镜中的像是由光的反射光线的延长线的交点形成的,所以平面镜中的像是虚像。虚像与物体等大,距离相等。像和物体的大小相等。所以像和物体对镜面来说是对称的。根据平面镜成像的特点,像和物的大小,总是相等的。无论物体与平面镜的距离如何变化,它在平面镜中所成的像的大小始终不变,与物体的大小总一样。但由于人在观察物体时都有“近大远小”的感觉,当人走向平面镜时,视觉确实觉得像在“变大”,这是由于人眼观察到的物体的大小,不仅仅与物体的真实大小关于,而且还与“视角”密切相关。从人眼向被观察物体的两端各引一条直线,这两条直线的夹角即为“视角”,如果视角大,人就 当人向平面镜走近时,像与人的距离小了,人观察物体的视角也就增大了,因此所看到的像也就感觉变大了,但实际上像与人的大小始终是相等的,这就是人眼看物体“近大远小”的原因。这正如您看到前方远处向您走来一个人一样,一开始看到是一个小黑影,慢慢变得越来越大,走到您面前时更大,其实那一个小黑影和走到您面前的人是一样大的,只是因为视觉的关系,平面镜成像的像和物关于镜面对称,因此人逐渐靠近镜面。像也一定逐渐靠近镜面,人的感觉是“近大远小”,这是一种视觉效果。

2、平面镜成像特点

1、平面镜成正立等大虚像,不能用光屏承接。

2、像和物的连线垂直于平面镜。

3、像到平面镜的距离等于物到平面镜的距离。

4、像和物关于平面镜对称。

5、像的大小相等,但是左右相反。

6、像的上下不变,左右互换。

3、平面镜成像实验

【仪器和器材】

蜡烛,12 cm×15 cm透明玻璃片(最好用贴有反光膜的汽车用玻璃),12 cm×10 cm普通透明玻璃片,玻璃胶。

【制作方法】

在透明玻璃12 cm边涂上适量的玻璃胶,将其固定在12 cm×10 cm普通透明玻璃片的正中间(要保证两玻璃面的垂直),并在反光面位置两侧的底座玻璃上画线。

【使用方法】

将做好的装置放在方格纸上,并让装置上的记号线与方格纸上的中线重合。

【实验技巧】

做实验时方格纸上的记号,应将物体的整个底部形状画出。

【实验方法】

本实验总方法:实验归纳法。

用未打开的蜡烛代替点燃的蜡烛的像的方法:等效替代法。

今天有关初中物理知识点:平面镜成像的相关内容就介绍到这里了。

初中物理知识点 7

1、电压是形成电流的原因:电压使电路中的自由电荷定向移动形成了电流。电源是提供电压的装置。

2、电路中获得持续电流的条件:①电路中有电源(或电路两端有电压);②电路是连通的。

注:说电压时,要说“xxx”两端的电压,说电流时,要说通过“xxx”的电流。

3、在理解电流、电压的概念时,通过观察水流、水压的模拟实验帮助我们认识问题,这里使用了科学研究方法“类比法”。

(类比是指由一类事物所具有的属性,可以推出与其类似事物也具有这种属性的思考和处理问题的方法)

物理学习心得 8

真的要我谈怎样学习物理,我想以下几点是非常重要的,首先我会认真听课,因为课上的习题知识都是老师教书几十年所总结的精华,在上每一节课时,我都会端坐静听,认真思考,不管我是怎样的疲劳,我都决不放过课上一分钟。第二是常温习,情况是这样的,如果物理课在上午,那么在中午吃饭后我都会花10分钟把老师上的那节课上的几个习题再看一遍,如果是下午有物理课,我回在晚上做这些事。第三,再完成前两个步骤后,我会在当天挤时间把老师的资料和自己的资料,都认真地做一遍,我会把自己认为好的东西打上五角星,不懂的题目,我会在课下与本班的“智能团”一起交流讨论。在我的资料书上,一般可以看到四种颜色的笔,我的很多总结都是用红笔在相应题的旁边作眉批。第四,进入高二,有很多的题目都联系了高一的知识,我会充分联想以前的知识。第五,做题时,一个难题我至少要想15分钟,然后再想其他的途经,有时,我会在打饭排队时想想,睡觉前想想,我做题从不想当然,我会严格按规律办事。以上这些就是我的学习心得。当然,要想搞好成绩,考试前的心态是很重要的,每次大考前,我会在心里无数次告诉自己“我一定要取得好成绩”,“我一定可以横扫考场”等等,虽然这些是大话,但我惊奇的发现,一次次的重复这些话,再考试时,我的思维是异常活跃。这些就是我的心得,谨供大家参考。

再此,祝大家取得好成绩!

在数理化三科中,物理在解题逻辑上对思维的要求更深一层,或者说,物理更需要对知识点的感悟,因为它重视分析,这一点在力学上表现得尤其明显。力学不管是在初中物理还是高中物理中占的比例都很大,并且题型一般归于难点和重点,然而解决该难点的金钥匙就是对物体受力的正确分析,这一能力不仅与日常生活中的物理分析意识有关,然而更重要的是课后大量辅助练习资料的积累。做练习并不是做得越多越好,手头有一两本好的资料便可以了,而很多同学可能认为只要把练习做完,这些知识便算是掌握了,其实不然,你不妨试试:在老师讲完一个新知识点且已把关于这部分的练习解决掉后,当再过一个星期,你再重新翻看相同的题型,你会惊愕地发现原来自己其实连最基本的理论知识都没掌握,更何况还要利用它来分析难题。

很多同学都有这样的经验:每当考试考砸后,都会埋怨哪道大题又没做对,哪个解题因素又没考虑,其实这些都没关� 而许多同学往往忽视这些。又例如运动和力的关系,有很多同学都搞不太清楚,越搞越晕,越学越犯迷糊,越觉得复杂。其实它们的关系很简单,就是牛顿第一定理和牛顿第二定理的直接应用。第一定理就告诉了我们处于平衡状态(静止或者匀速直线运动)的一定不受力(这种情况一般很少)或者受平衡力作用,而受到平衡力作用的一定处于平衡状态。而牛顿第二定理 F=ma 则再明白不过的说明了有力就有加速度,有加速度就会有力,而加速度的存在就说明物体的运动状态在改变,没有加速度那么物体的运动状态就不会变,从而得到力是物体运动状态改变的原因,而运动状态的改变自然就是力作用的结果,因此这样一理解了那么对于力和运动的关系的把握肯定要上一个台阶,也不会再犯迷糊了,所以基本概念实际上是学物理最重要的。

在学习过程中还要注意及时归纳总结,特别是在经过一个阶段的学习以后,经验和教训都要一起总结,总结经验主要就是把一些好的经典的解题方法和思路在过一过目,看自己是否真正的掌握了。而总结教训则是把自己平时总喜欢犯的一些错误归结到一起,看看它们的共同点,它产生向往的心理,进而对它发生兴趣。没有这种情感,就不可能形成兴趣。因此,在我们备课组中,我们常常互相要求,互相提醒要深入到学生中去,与他们同欢乐,共忧患,真正把学生当成是一个独立的人看待,和学生打成一片,利用一切手段激发学生对物理学的热爱之情。有了良好的师生关系,学生才能热爱教师,听从教师的教诲,做到“亲其师,信其道”。让学生在一个轻松愉快的环境中学习,他怎会不活跃起来?

放手让学生自己去观察现象、发现问题、讨论问题、解决问题。

因为从小学开始,学生接受的就是应试教育的影响,在大脑中"听教师讲、被动学"的思维习惯根深蒂固。为了调动学生的主观能动性,积极参与到教学中来,我们经历了想办法——实践——改进——再实践的一个过程。

刚开始的时候,我门主要根据课堂内容事先设计问题,然后再在课堂上提出问题,引导学生回答问题,但很快我们发现这样以教师为中心设计问题、提出问题,学生被动地指向性地回答问题,学生的学习能力得不到锻炼,心理始终处于消极的等待中。也就是教师没有提问时等待教师提问,回答了提问还要等待教师鉴别回答正确与否,致使学生的思维缺乏自主性和创造性,考试中大部分学生都是做过的题目就会做,换个面孔出现就迷糊了。而且于我们大片的中下学生,这种方法几乎不能引起他们的兴趣。

于是我们想办法改进,加大集体备课的强度,互相提出课堂上可能出现的各种问题,然后讨论,争辩,由于备课充分,在课堂上我们可以更加灵活的针对学生提出问题,并减小问题的指向性,注意控制课堂气氛,引导学生掌握知识。效果逐渐出来了,但对于后进生来说仍然不够吸引。

而我们心里非常清楚,学校的物理成绩差,并不是因为尖子生的缺乏,而是因为后进生的数目比起其他学校来说太大了。所以为了提高教学成绩,我们还需要继续想办法。在新教材的使用过程中,我们不断争论,逐渐成型了一个教学模式,那就是将一个班的学生分成四至五人的学习小组,老师退到指导者和助手的位置,让让学生看书的基础上,采取小组互帮互学讨论式学习,让学困生向优势生学习,优势生帮助学困生,小组中多人动起来,那么剩下的小部分人也动起来,各个小组动起来,全班就随着也动起来。因为充分相信学生,把解决问题的时间、空间留给学生,不但让优生有机会表现,也让差生有机会表现,从而建立起学生的学习信心。这样,知识的学习,科学探究方法的掌握,是学生亲自体验的,影响才是最深刻的。

在实践的过程中,对于一个知识点或者一个问题,通常都要求学生先在小组中自己讨论,形成共识,然后再提到班集体中进行解决,同时我们注意,即便是学生在活动过程中写错了或说错了,我们也要求要用鼓励的眼光和肯定的语气,要充分肯定学生的积极表现,鼓励其继续努力。然后师生共同来分析为什么错了,原因在哪里。这样生生互动、师生互动的气氛一旦形成,学生发现问题和解决问题的能力令人较满意,学生的学习主观能动性也从被动压迫的变为主动自愿了,从而时收到的效果是事倍功半了。在上学年的期末考试中,我校的物理成绩比往年已有所提高。

但是这种教学模式仍然不够成熟,就现在而言,运用得最成功的是在复习中,以学期的公开课“光的'反射”为例,我们通过集体备课,决定采取的就是小组互帮互学讨论式教学,在上课提出本节课的内容后,让学生马上形成学习小组,然后由一个同学负责记录,大家一起合上书本,对本节知识进行探究,因为有时间有机会,无论成绩好差的同学都积极投入课堂,气氛比较热烈。接着小组中的同学一起找出这些知识点之间的关系,看能否形成一个完整的知识结构图,因为知识结构图出来之后还可以上黑板板出来与其他小组比赛,同学们都还处在一个好胜的年龄,所以会努力和小组同学合作,争取自己的结果是最好的,从而在学习知识的同时还培养了学生与他人合作的能力。最后几个小组在黑板展示后,师生共同评价哪个好,为什么好,期望经过这样的训练,可以教会学生一种学习方法

通过学生总结将所有知识点都复习之后,由教师指导学生明确本节的重点难点,然后针对重点难点出示练习题,让学生进行强化练习,在强调遵守课堂纪律的同时,允许同学遇到不懂的地方可以在小组中互相讨论,互相教学,这样就调动了成绩差的学生,因为通常成绩差的学生是不敢请教老师的,但请教同学他们还是乐意的。同样,对问题的解决总是采取比赛的方式,所以同学们都特别希望自己可以赢,成绩差的会希望自己有在解答的过程中有机会表现,成绩好的同学希望自己这个小组优秀,所以就课堂纪律上作到了学生管学生,就课堂教学上做到了学生教学生,导致课堂的学习气氛比较好,课堂效果也比较不错。

而在平时的教学中,我

以上是我在物理新课标教学中的措施和心得,愿同行们指正和共勉!

初中物理知识点 9

一、重力势能

1、定义:通俗易懂的解释就是物体质量越大、位置越高、做功本领越大,物体具有的重力势能就越大。

物体由于被举高而具有的能叫做重力势能(gravitational potential energy)。

是引力势能在特殊情形下的推广,是物体在重力的作用下而具有由空间位置决定的能量,大小与确定其空间位置所选取的参考点有关。物体在空间某点处的重力势能等于使物体从该点运动到参考点时重力所作的功。

2、决定因素:对于重力势能,其大小由地球和地面上物体的相对位置决定。物体质量越大、位置越高、做功本领越大,物体具有的重力势能就越多。某种程度上来说,就是当高度一定时,质量越大,重力势能越大;质量一定时,高度越高,重力势能越大。

3、公式:重力势能的公式:Ep=mgh(Ep为重力势能,m为质量,g为重力系数,等于9.8N/kg)

二、磁感线

①定义:根据小磁针在磁场中的排列情况,用一些带箭头的曲线画出来。磁感线不是客观存在的。是为了描述磁场人为假想的一种磁场。任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。

②方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。

③典型磁感线:

④说明:

A、磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。但磁场客观存在。

B、用磁感线描述磁场的方法叫建立理想模型法。

C、磁感线是封闭的曲线。

D、磁感线立体的分布在磁体周围,而不是平面的。

E、磁感线不相交。

F、磁感线的疏密程度表示磁场的强弱。

三、磁极受力

在磁场中的某点,北极所受磁力的方向跟该点的磁场方向一致,南极所受磁力的方向跟该点的磁场方向相反。

四、电磁铁

1、电磁铁主要由通电螺线管和铁芯构成。在有电流通过时有磁性,没有电流通过时就失去磁性。

2、影响电磁铁磁性强弱的因素。

电磁铁的磁性有无可以可以通过电流的有无来控制,而电磁铁的磁性强弱与电流大小和线圈匝数有关。

3、电磁铁的应用

此外还有磁悬浮列车,扬声器(电讯号转化为声讯号),水位自动报警器,温度自动报警器,电铃,起重机。

五、磁场性质与方向

基本性质:磁场对放入其中的磁体产生力的作用。磁极间的相互作用是通过磁场而发生的。

方向规定:在磁场中的某一点,小磁针静止时北极所指的方向就是该点磁场的方向。

六、电流的磁场

奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。该现象在1820年被丹麦的物理学家奥斯特发现。该现象说明:通电导线的周围存在磁场,且磁场与电流的方向有关。

通电螺线管的磁场:通电螺线管的磁场和条形磁铁的磁场一样。其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则来判断。

高中物理知识点整理 10

运动的描述

1、 物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。

2、 运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。

3、 速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。

1、 解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

2、 分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑; 洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。

3、 同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最大最小间,多力合力合另边。多力问题状态揭,正交分解来解决,三角函数能化解。

4、 力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

牛顿运动定律

1、 F等ma,牛顿二定律,产生加速度,原因就是力。合力与a同方向,速度变量定a向,a变小则u可大 ,只要a与u同向。

2、 N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;

加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零。

曲线运动万有引力

1、 运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。

2、 圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。

3、 万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。

卫星绕着天体行,快慢运动的。卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

机械能与能量

1、 确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。

2、 明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。

3、 确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。

电场

1、 库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。

2、 电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。

3、 电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。

场能性质是电势,场线方向电势降。 场力做功是qU ,动能定理不能忘。

4、 电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。

恒定电流

1、 电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。

正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。

2、 电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。

电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。

3、 基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。

4、 闭合电路部分路,外电路和内电路,遵循定律属欧姆。

路端电压内压降,和就等电动势,除于总阻电流是。

磁场

1、 磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。

2、 F比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。

3、 BIL安培力,相互垂直要注意。

4、 洛仑兹力安培力,力往左甩别忘记。

电磁感应

1、 电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。感应电动势大小,磁通变化率知晓。

2、 楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。

3、 楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i 向。

交流电

1、 匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。

中性面计时是正弦,平行面计时是余弦。

2、 NBSω是最大值,有效值用热量来计算。

3、 变压器供交流用,恒定电流不能用。

理想变压器,初级U I值,次级U I值,相等是原理。

电压之比值,正比匝数比;电流之比值,反比匝数比。

运用变压比,若求某匝数,化为匝伏比,方便地算出。

远距输电用,升压降流送,否则耗损大,用户后降压。

气态方程

研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。

压强分析封闭物,牛顿定律帮你忙。状态参量要找准,PV比T是恒量。

热力学定律

1、 第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。

正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。

2、 热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。

机械振动

1、 简谐振动要牢记,O为起点算位移,回复力的方向指,始终向平衡位置,大小正比于位移,平衡位置u大极。

2、 O点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4A路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。到质心摆长行,单摆具有等时性。

3、 振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。

初中物理知识点 11

液化定义:物质从气态变成液态的过程,需要放热。

1.液化现象:

①水开后,壶嘴看见“白气”(壶中汽化出水蒸气,遇到冷空气液化成雾状小水珠)

②夏天自来水管和水缸上会“出汗”。(空气中的水蒸气遇冷液化成水珠)

2.液化的方法分为:降低温度、压缩体积两种方法

⑴降低温度(遇冷、放热)液化:①雾与露的形成(空气中水蒸气遇冷液化成雾状小水珠;附在尘埃浮在空中,形成“雾”;附在草木,聚成“露”)②冬天,嘴里呼出“白气”。夏天,冰棍周围冒“白气”。(水蒸气遇冷液化成雾状小水珠)③冬天,窗户内侧常看见模糊的“水气”。(屋内水蒸气遇到冷玻璃液化成小水珠)④牙医在为病人检查牙齿时,将检查用的小镜子在酒精灯上稍微烤一下,然后放入口腔中。(防止口腔内的水蒸气遇冷液化成小水珠附在镜面上)

⑵压缩体积液化:①在常温下,将石油气压缩放入钢瓶中,以液态石油气的形式保存。②“长征”火箭的燃料和助燃剂分别是:压缩成的“液态氢”和“液态氧”。③打火机中,常用压缩后的液态“丁烷”作为燃料。

3.液化放热:

①北方的冬天,在室内暖气管道中通以灼热的水蒸气来取暖,最后在管道另一头回收到的是水。(水蒸气液化成水放出大量热)

②100℃的水蒸气比100℃的水更容易烫伤人体。(100℃的水蒸气液化成100℃的水要放热)

希望同学们能够认真阅读物理物态变化知识点-液化,努力提高自己的学习成绩。

物理学习心得 12

在暑期期间,我参加了xxx省xxxx年普通高中物理课暑期关于“有效评价”远程培训。经过接近两个月有序的培训学习,我除了收看了关于“有效评价”的专题讲座视频,还进行了网上交流与评论。我深深地体会到新课程标准在很多方面都发生了巨大变化,让我对新课程改革后的高中物理教学工作有了更深一层的领悟。从这次远程物理的培训中,给了我许多的思考,深刻地体会到自己有很多东西要去学习。

首先作为一名教师,我觉得自己在教学中的付出和感悟,在这次的培训中得到了更好的指导。不仅使我清楚能整体把握高中物理新教材的重要性和常用方法,还能认识到高中物理教学的主要脉络,站在更高层次上来面对高中的物理课程。课堂是实施课改的主要阵地,新的课程理念如何在课堂中完美体现,如何评价好一节课,这个假期的学习让我解决了很多的问题。

再者网� 在网络学习的过程中教师可以通过论坛或者是平台去探讨。还可以为整理与分析学生的。批判思维与创造性思维的培养搭建平台,有利于建构新的教学模式和评价模式。

全国中小学教师继续教育网为我们教师提供了这么个学习补充能量的平台,使我们的业余生活趣味化,充实了我们自己。所以我们要通过这么好的一个平台把知识学到手,完善自己,铺设一条能使自己成为合格人民教师的道路来。

物理学习心得 13

在初中物理教学过程中,教师要根据教学的内容、方法、场所不失时机地渗透美育,激发学生对物理知识学习的兴趣和求知欲望,使他们在愉悦的情境之中轻松、全面地认识物理规律,掌握并正确地应用知识解决问题,提高创新意识和创造能力,如此对提高物理教学质量将起到事半功倍的效果。

一、创设美育情境,降压减负,使学生在认识过程中感受美

课堂美育环境创设,需要通过看、做、想、用等一系列活动,让学生感受物理知识学得有趣有用,从而喜爱物理学,操作方法有以下几种:

1.实验教学。物理教学以物理实验为根基,每个测量、测定中研究型实验、教师演示实验、课外兴趣实验,无不给学生留下真实感。尤其是演示实验选用的简单易操作的器材,越贴近学生学习生活的用具,教学效果越显著。

2.直观教学。对于实验室无法完成的实验,可采用挂图、放映幻灯片来加强直观教学,加深学直观感。

3.激趣设疑。物理是融知识性、科学性、趣味性于一体的一门自然学科,在教学过程中,根据学生求知好奇的心理,开展有趣的实验,尤其是用玩具做的实验,更能激起学生学习的兴趣。如用弹弓研究动、势能转化,用青霉素瓶做大气压存在等实验。根据这些实验现象提出设问,让学生思考,随着教学展开而揭示谜底,学生能够知道物理知识来源于人类社会生产实践和生活之中。

4.反差之比。对于易混淆的物理概念采取反差对比教学方法,加深学生了解它们之间的共性与个性的印象,正确区分不同物理量的内涵,从而达到认识物理规律的本质。如歌曲与嘈杂声对照,区分乐间与噪声;拿出凹面镜与凸面镜对太阳照,请学生观察聚光点,再让学生用这两面镜给自己照像,对比两面镜的作用与功能。

5.生动、新奇、真实的举例。物理来源人类社会生产和生活实践,帮助学生对物理概念的理解、物理知识的应用离不开举例说明或验证。用生动、新奇、真实的事例予以补证,能够培养学生观察能力,这些引例包括:社会新闻、消息、歌词、诗句、格言、寓言故事等。

二、挖掘课本美育素材,展现美

初中物理课本教材作为学生学习物理知识的工具,它不仅注重传授本学科的功能,而且在编写的思想、体系、内容上融知识性、科学性、思想性、趣味性于一体,蕴含大量美育素材,具体表现在以下几个方面:

1.形象感染美。课本将思想品德教育放在前位,能以其美的形象影响学生思想品德。如介绍居里夫人、法拉第等科学家的刻苦钻研的精神,启迪学生树立积极探索、勇于求真、追求进步的信念;以辩证唯物主义思想指导学生认识客观事物,用具体的事例和大量的图示描述我国劳动人民、科学工作者对物理学发展的贡献,如墨翟的小孔成像、汉代砖刻图片、滑轮使用记载、明代发明的火龙、现代超导的研究、和平利用原子能等。

2.图像画面的直观美。人的视听感官是感知美的主要感官。要引导学生观赏图像画面,直接感受物理现象和规律的真实美。课本配置的图有:演示实验图、有趣的物理现象图、实验工具图、物理知识在生活和生产中应用事例图、自然景观图、科学家肖像图,看过这些生动而直观的画面,给人以观形如闻声之快感,对学生认知识意识由感性认识上升到理性认识,有一定的助动作用。

3.内容新颖美。新编教编写的`又一特征是在思想内容上有新颖的美感。新增内容有必学内容,如声学、无线电通讯常识等篇章;有常识性了解知识,如磁悬浮列车假设理论、放射性元素等;有阅读性新知识,如火箭、激光知识等,这些新知识不仅给学生新感觉,还拓宽了学生认识视野,感受到物理学富有新颖的创造性和现代新气息。

三、发挥想象,拓宽认识领域,激励学生发现美、创造美

1.编制习题。根据人类生产实践和社会生活、物理实验的数据编制习题是个有趣的活动。学生乐于参加这项活动,学会从简单的已知、求条件对换、补充条件到自编习题,从不同的角度展开想象,进行再创造。由此认识到物理习题编制并不神秘,都是人的意识的产物。教师再顺势抽几道习题加评比,看谁编题较好,更符合实际,予以鼓励和表扬,使学生感受成功的喜悦。

2.一题多解与一题多为。习题课教学不是简单的分式中数字的演算教学,而是围绕题目给定的条件指导学生明确习题考察的知识点,挖掘习题中的隐含条件和等量关系,学会用公式解题,思索习题解法的可行性,联想习题的可变性、延伸性,使学生能熟练地从不同方面学会一题多解。对可变性习题可采取增补或变换条件、结论等方法进行,使学生学会解答模型题,达到触类旁通,提高应变能力。

3.摹拟实验故障。实验出现故障是常见的,具有可能性和偶然性。参与实验操作的每个学生会遇到不同的故障,要排除可能出现的故障,教师应事先在课堂上通过设置故障,并加以摹拟,增强学生的分辨能力和识别能力,提高认识的操作能力。

4.探究物理量可能性测定方法。教材中有些物理量可以用不同器材进行测定。如物质的密度、导体的电阻等,由于选择测量的器材的不同,方法就不会一致,但结果相同。以此引导学生加以想象,选择较合适的测量方法,达到理想的测量效果。

高中物理知识点整理 14

中性面线圈平面与磁感线垂直的位置,或瞬时感应电动势为零的位置。

中性面的特点:a.线圈处于中性面位置时,穿过线圈的磁通量Φ最大,但=0;

产生:矩形线圈在匀强磁场中绕与磁场垂直的轴匀速转动。

变化规律e=NBSωsinωt=Emsinωt;i=Imsinωt;(中性面位置开始计时),最大值Em=NBSω

四值:①瞬时值 ②最大值③有效值电流的热效应规定的;对于正弦式交流U==0.707Um ④平均值不对称方波:不对称的正弦波

求某段时间内通过导线横截面的电荷量Q=IΔt=εΔt/R=ΔΦ/R

我国用的交变电流,周期是0.02s,频率是50Hz,电流方向每秒改变100次。

表达式:e=e=220sin100πt=311sin100πt=311sin314t

线圈作用是“通直流,阻交流;通低频,阻高频”。

电容的作用是“通交流、隔直流;通高频、阻低频”。

变压器两个基本公式:①

②P入=P出,输入功率由输出功率决定,

远距离输电:一定要画出远距离输电的示意图来,

包括发电机、两台变压器、输电线等效电阻和负载电阻。并按照规范在图中标出相应的物理量符号。一般设两个变压器的初、次级线圈的`匝数分别为、n1、n1/ n2、n2/,相应的电压、电流、功率也应该采用相应的符号来表示。

功率之间的关系是:P1=P1/,P2=P2/,P1/=Pr=P2。

电压之间的关系是:

电流之间的关系是:

求输电线上的电流往往是这类问题的突破口。

输电线上的功率损失和电压损失也是需要特别注意的。

分析和计算时都必须用,而不能用。

特别重要的是要会分析输电线上的功率损失。

高中物理知识点整理 15

一、初中物理知识回顾

1、 机械运动:重点学习了匀速直线运动。

2、 力:包括重力、弹力、摩擦力, 二力平衡条件,同一直线二力合成, 牛顿第一定律

3、 密度

4、压强:,包括液体内部压强,大气压强。

5、浮力

6、简单机械:包括杠杆、滑轮、功、功率。

7、光 :包括光的直线传播、光的反射折射、凸透镜成像规律

8、热学: 包括温度、内能

9、电路的串联并联、电能 、电功

10、磁场、磁场中的力、感应电流

11、能量和能

二、高中物理知识概览

高中物理的主要内容可分为力学、热学、电学、光学、原子物理五个部分。

力学主要研究力和运动的关系。重点学习牛顿运动定律和机械能。比如说我们要研究游乐场中的“翻滚过山车”是什么原理。再如,我们要研究要用多大速度把一个物体抛出地球去,能成为一颗人造卫星?

热学 主要研究分子动理论和气体的热学性质。

电学 主要研究电场、电路、磁场和电磁感应。重点学习闭合电路欧姆定律和电磁感应定律。初中电学假定电源两极电压是不变的;高中电学认为电源两极电压是变化的。这说明高中物理比初中物理内容更深更广,由定性分析变为定量分析,学习迈上一个新的台阶,同学们要有克服困难的思想准备。

光学 主要研究光的传播规律和光的本性。

原子物理 主要研究原子和原子核的组成与变化。

三、高中物理和初中物理的主要转变

(一)概念性转变

1、从标量到矢量的转变。从标量到矢量的转变会使我们对物理量的认识上升到一个新的境界。初中我们只会代数运算,仅能从数值上判断一个量的变化情况。现在要求用矢量的运算法则,即要用平行四边形法则进行运算,判断矢量的变化时也不能只看数值上的变化,还要看方向是否变化。

2、速度的概念,初中定义速度为路程和时间的比值,只有大小没有方向。而高中定义为位移和时间的比值,既有大小又有方向。因此,初中学习的速度实际上是平均速率。

3、从速度到加速度的引入。从位移、时间到速度的建立是很自然的一个过程,我们容易接受这些内容。从速度到加速度是对运动描述的第二个阶梯,面对这一阶梯我们必须经历一个由具体到抽象又由抽象到具体的过程。首先遇到的困难在于对加速度意义的理解,开始时我们往往认为加速度就是加出来的速度,这就把加速度和速度的改变量混淆起来。更困难的是加速度的大小、方向和速度大小、方向以及速度变化量的大小方向之间关系的梳理,都是很难接受的。

(二)规律上的升级。

概念上的升级必然导致规律上的升级,规律上的升级主要表现在以下两个方面:

1、进入高中后,物理规律的数学表达式增多,理解难度加大,致使有的同学不解其意,遇到问题不知所措。

2、矢量被引入物理规律的数学表达式,由于它的全新处理方法使很多学生感到陌生,特别是正、负号和方向间的关系,如牛顿第二定律,动量定理的应用,解题时要注意各量的矢量性。

(三)方法上的升级

1、从定性到定量。初中物理中的内容基本上是对物理现象的定性说明和简单的定量描述,进入高中后要对物理现象进行模型化抽象和数学化描述。

2、从一维运动到二维运动。初中只学习匀速直线运动,而在高中不仅要学习匀变速直线运动,还要学习二维的曲线运动,并在研究物理过程时引入坐标法,把平面上的曲线运动(如平抛运动)分解成两个方向上的直线运动来处理。3.引入平均值的方法。这个方法对于研究非均匀变化的物理量的规律是很重要的科学简化法,如变速运动的快慢、变力做的'功、变力的冲量等。

从初中到高中,要求我们处理问题时能从个别到一般,由具体到抽象,由模仿到思辨。

四、如何学习高中物理:

1、认真阅读教材,在预习和复习中学会自学

很多科学家是自学成才的典范,他们大部分知识是经过自学获得的。自学能力表现在自己会认真阅读、会独立思考、会查找资料,自己能解决一些疑难问题。自学能力是一个人能获得知识、能理解与运用知识的基本保证。同学们上高中要增强自学意识,学会自学,对学好高中各门学科都非常有利。

在预习中,对于第一次接触的概念、规律要认真分析。

对于物理概念的学习,有意识地注重三个方向的思考:

(1)为什么要引入这个概念?有什么用?反映什么问题?

(2)这个概念是怎么定义的?表达式怎样写?

(3)是矢量,还是标量?方向如何?

对于物理规律,也要注重三个方面的学习:

(1)它是怎么得到的?

(2)规律的内容是什么?表达式怎样?

(3)表达式中各物理量的含义是什么?条件是什么?这样去学习新概念,新规律,可加深对知识的理解的掌握,同时也能改掉死记硬背的习惯,逐步掌握学习物理的正确方法。

2、认真听讲,独立思考

学好物理,上课要认真听讲,要在老师的引导下,积极思考问题,主动参与教学过程。独立思考就是要善于发现问题和解决问题。不会提问的学生,不是学习好的学生,但也不能一遇到问题就问,要先经过自己独立思考,若还不能解答,再去问老师。

3、做好实验,做好练习

物理解题规范主要体现在:思想方法的规范,解题过程的规范,物理语言和书写的规范。解题规范化训练要从高一抓起,重点抓好以下几点。

(1)画受力分析图和运动过程图,力学中有些习题,如果不画受力图,就不知从何处着手,就不能得出正确结果。画出受力分析图,能使我们更好地理解题意,往往能达到事半功倍的效果,因此画出正确的受力分析图是解决力学问题的快捷途径。运动学中画出运动过程示意图,其作用也是不可替代的。

(2)字母 符号的规范化书写一些易混的字母从一开始就要求能正确书写。受力分析图中,力较多时,如要求用大写的F加下标来表示弹力,用小写的f加下标来表示摩擦力;用F与F’来表示一对弹力的作用力与反作用力;力F正交分解时的两个分力Fx、Fy、初、末速度ν0、νt,等等。

(3)必要的文字说明 “必要的文字说明”能使解题思路清楚明了,解答有根有据,流畅完美。比如,有的同学在力学问题中,常不指明研究对象,一上来就写出一些表达式,让人很难搞清楚这个表达式到底是指哪个物体的;有的则是没有根据,即没有原始表达式,一上来就是代入一组数据,让人也不清楚这些数据为什么这样用;有的同学的一些表达式中没有字母的说明,如果不指明这些字母的意义也是让人摸不着头脑。很显然这些都是不符合要求的。

(4)方程式和重要的演算步骤 方程式是主要的得分依据,写出的方程式必须是能反映出所依据的物理规律的基本式,不能以变形式、结果式代替方程式。同时方程式应该全部用字母、符号来表示,不能字母、符号和数据混合,数据式不能代替方程式。演算过程要求比较简洁,不要求把大量的运算化简写到卷面上,计算的具体过程可以在草稿纸上进行。

4、注意总结归纳

物理的题目千变万化,但物理的规律是相对稳定的。掌握了物理规律,就可以以不变应万变。要有意识地对物理试题或练习题进行分类归纳,总结出该类试题(或问题)的二级或三级规律或解题方法。比如:匀减速直线运动,要求出若干时间后物体的位移,很多同学在解这类题时总是出错,因为所给出的时间可能超过了物体从初始状态到停止运动(速度减为零)的时间。这类题就可以总结出一个便捷的通用的解题方法出来,今后凡是遇到此类题目,根本不需要深入考虑,直接运用总结出来的这类题的通用解法,一气呵成。

物理学习心得 16

极限法在现代数学乃至物理等学科中有广泛的应用。由有限小到无限小,由有限多到无限多,由有限的差别到无限地接近,就达到事物的本真。极限法揭示了变量与常量、无限与有限的对立统一关系,借助极限法,人们可以从直线去接近曲线,从有限接近无限,从“不变”认识“变”,从不确定认识确定,从近似认识准确.从量变认识质变。

早在中国东汉时期的中国伟大的数学家刘徽,在几何方面,提出了“割圆术”,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的'方法.他利用割圆术科学地求出了圆周率π=3.14的结果.他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和园面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值.刘徽提出的计算圆周率的科学方法,奠定了此后千余年中国圆周率计算在世界上的领先地位。“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。体现了微积分的思想。

高一物理教学中关于瞬时速度的分析就采用了这种极限法的思想,从运动学角度看,平均速度的公式是v=△x/△t,当△t足够小的时候所求的v就是瞬时速度。得的平均速度就越能较精确的描述人经过某点时的快慢程度。当位移足够小(也就是时间足够短)时,所得到的平均速度就是“一闪而过”的瞬时速度了。如果两个量在某一空间的变化关系为单调上升或单调下降的函数关系(如因变量与自变量成正比的关系),那么,连续地改变其中一个量总可以使其变化在该区间达到极点或极限。根据这种假定来考虑具体问题的思维方法我们就把它称为极点思维法或极限思维法。

同样极限思维法在中学物理教学中的作用运用极限思维法来求解某些物理问题时,与常规解法相比较,可大大地缩短解题时间,提高解题效率。

今天小编和大家就分享到这,希望这篇文章对大家有用。

一键复制全文保存为WORD
相关文章