组合图形的面积教学设计(优秀3篇)

组合图形的面积教学设计 篇1

教学目标:

1、在自主探索的活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

教学重点:探索组合图形面积的计算方法。

教学难点:理解并能有效地选择计算方法并进行正确的解答。

学生分析:本节课是在学生已经掌握长方形、正方形、平行四边等基本图形面积计算方法的基础上进行的。在进行本节课的学习之前,学生运用转化思想进行过平行四边形、三角形、梯形面积计算方法的探索。在教材第二单元“比较图形面积”一节中学生已初步感受到割补方法在图形面积计算中的应用。

教学过程:

一、复习

课件出示一些图形:三角形、正方形、平行四边形、梯形。

教师:这些图形都是我们学过的图形,能说一说怎样计算它们的面积吗?然后,请学生根据图中的数据进行计算。

过渡:这些图形都是我们学过的能直接利用公式进行面积计算的基本图形,这样的图形面积你会算吗?

二、探索解决组合图形面积计算的问题。

1、课件出示计算客厅面积的问题,并让学生说说这个图形的特点。

2、让学生先估算客厅这个组合图形的大概面积。

3、小组探索,合作寻求计算方法。

请大家独立思考并交流算法,然后小组合作、分工完成。(教师巡视,及时了解学生典型的算法。)

4、汇报、交流算法。

选择几种较有代表性的算法,让学生上台把图片贴在黑板上,并写出计算过程。并为学生的各种想法标出序号。

结合学生的发言,引出并板书:分割法添补法

以上几种方法,哪种比较简单?

5、客厅地面面积与我们以前所学过的图形的面积计算有什么区别呢?揭示课题:组合图形的面积。

三、练习

1、下面各个图形由哪些基本图形组成的?(课后练一练第1题)

2、一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?(课后试一试)

3、实际应用。(课后练一练第2题)

四、课堂小结:

1、你在生活中见到过哪些组合图形的应用呢?

2、今天学习了组合图形的面积,你认真在计算其面积时,要如何做或注意些什么?

组合图形的面积教学设计 篇2

教学内容:义务教育课程标准实验教科书小学数学五年级上册第92至93页的内容。

教学目标:

1、认识组合图形,会把组合图形分解成已学过的平面图形。

2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

4、通过拼组图形,使学生感受数学与现实生活的密切联系,体会数学带给大家的生活美。

教学重点:探索并掌握组合图形的面积计算方法。

教学难点:理解并掌握组合图形的组合及分解方法。

教具准备:多媒体课件

学具准备:各种有色卡纸、胶水、剪刀等。

教学过程:

一、复习铺垫:

同学们,老师想知道你们已经学会了计算哪些平面图形的面积?

二、创设情境,激趣导入。

根据已知条件进行分解

师:大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的建筑物,好吗?请同学们欣赏时认真想想:你发现了什么?(课件展示)

师:同学们观察得真仔细!除了这些外,老师也发现了一些这样的图形:

(课件展示)

我们学过这些图形吗?

请同学们认真观察,这些图形有什么共同的特征?

左边由几个图形组成?右边呢?大家想想看一个图形还可能是由几个图形组成的呢?

像这些由几个简单的图形组合而成的图形,我们给它取个什么名字好呢?你是怎么知道的?(板书:组合图形)这节课你们想探究组合图形的哪些知识?

三、自主学习,探究新知。

1、组合图形的分解:

师:组合图形在日常生活中有着广泛的应用,我们一起来认识生活中的组合图形。

(1)电脑出示书第92页的四幅主题图。

师:认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开书本92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

(2)小组讨论。

(3)让学生举例说说生活中的组合图形。

同学们,开动脑筋想想:生活中哪些地方还有组合图形?

2、自主解决例题。

师:同学们真棒呀!知道生活中存在着很多美丽的组合图形,那如果老师想知道这些组合图形有多大,实际上是求什么?(板书:的面积)你们会求吗?下面老师考考大家是不是真的会?

⑴出示例题4

⑵生独立解答。还有其他解法吗?如果有困难,小组内互相帮助。(两学生板演)

⑶生汇报。

师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?(板书:分解)

⑷生看书质疑。

师:下面老师再考考你们是不是真的明白。

3、出示做一做。问:这块地是由哪些简单图形组成的?

⑴生独立计算。

⑵生展示思路。

四、应用新知,解决问题:

师:同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。(题目略)

师:通过刚才的练习,�

师小结:可见求组合图形的面积可以用相加的方法,也可以用相减的方法。(板书:相加或相减)

2、求中队旗的面积。

师:看来今天大家都掌握得很好。可是老师被一个难题难住了。咱们班同学准备去秋游,学校要求我们制作一面中队旗。(出示中队旗)可老师不知道要用多少布。同学们能否用今天所学的知识来帮帮老师呢?动手算一算。请小组内分工合作。

(1)出示讨论提纲:

你们组能想出几种算法?有没有更简便的方法?

看哪一小组分工合作的最好?速度最快?

(2)小组分工合作。

(3)展示学生的各种算法。

师生小结:从练习中我们知道在求组合图形的面积时,要根据已知条件对图形进行分解,不是任意分解都能计算的。分解图形时要考虑尽量用简便的方法计算。

(板书:根据已知条件进行分解)

五、新知的拓展:组拼组合图形

谢谢你们,老师终于知道了需要买多少布了。请各小组用几个简单的图形组合成一个美丽的图案。看哪一小组拼得图案最美丽。同学们赶快动手吧。

1、学生合作组拼。

2、展示评价学生的作品。

3、选择其中一幅学生作品,让学生说说该怎样做才能求出它的面积。

六、总结:

通过这一节课的学习,同学们有什么收获?�

2、能根据各种组合图形的条件,有效地选择计算方法进行解答,并能解决生活中相关的实际问题。

3、培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。

教学重点:掌握组合图形面积的计算方法。

教学难点:理解计算组合图形面积的多种方法。

教学关键:学会运用“分割”与“添补”的方法计算组合图形的面积。

教学准备:电脑课件、正方形、长方形等图形。

教学过程:

一、复习导入。

1、复习。

(1)回答。

谁能说说我们已经认识了哪些平面图形?怎样计算它们的面积?

指名回答后,教师用字母公式表示长方形、正方形、三角形、平行四边形、梯形的面积公式。

(2)如图所示,计算下面图形的面积。

课件出示图形。

学生独立计算后,教师组织学生进行全班核对;全班核对时,教师让学生说说计算上面这些图形的面积时要注意什么。

2、引入。

师:请同学们拿出课前准备的纸片,请用这些图形拼一个复杂的图形并说一说像什么。

学生拿出课前准备的图形,进行拼图的操作活动。学生拼出后,教师抽选部分学生展示自己拼出的图形。

学生回答。

师:同学们说的真好,那么请你们看看黑板上所拼的各种图形,它们有没有共同的特点呢?

指名回答,通过交流,引导学生认识:虽然拼出的图形的形状不同但都是由几个简单图形拼出来的。

教师指出:像这样由几个简单图形拼出来的图形,我们把它们叫做组合图形。

师:你能算出自己拼出的组合图形的面积吗?(生回答:先把每个图形的面积算出来,再相加就行了。)

师:这节课,我们就来学习组合图形面积的计算。

板书课题:组合图形的面积。

二、探索新知。(电脑课件出示)(单位:米)

1、出示例题。

小华家新买了住房,计划在客厅铺地板(客厅平面图如下)。请你估计他家至少要买多大面积的地板,再实际算一算,并与同学进行交流。

2、自主探索算法。

先让学生估计小华家至少要买多大面积的地板(指名回答),接着教师提出“怎样算出准确的得数”这个问题。

接着让学生在独立思考的'基础上再小组内交流算法。老师巡视,及时了解学生典型的算法。

师:请同学们小组合作,帮小华计算出这个图形的面积,看那些组的方法又多又巧。(学生合作讨论计算,教师巡视。)

3、全班交流算法。

师:哪个组能给大家介绍你们的方法,并说说为什么这样做?

(学生展示分割方法和计算过程,陈述思考的过程,教师用电脑课件演示并板书。)

师:大家采用的方法有什么共同的特点呀?

师:为什么要进行分割?

师:大家采用的就是人们计算组合图形面积常用的一类方法,叫作分割法。(板书:分割法)

师:除了分割法外,还有没有别的方法可以计算这个组合图形的面积呢?

学生回答。

师:这样能计算组合图形的面积吗?

学生回答。

师:我们班的同学真是太棒了!这就是计算组合图形面积的另一类方法,叫作添补法。(板书:添补法)。

师:我们可以利用分割法和添补法计算组合图形的面积。简称割补法。()(板书:割补法)。

三、巩固练习

1、如图,一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?

(1)先指导学生理解题意,让学生明确“这张纸板还剩下多大的面积?”指的是哪些部分的面积。

(2)再让学生独立计算,在此基础上教师组织学生交流算法。

2、如图,有一面墙粉刷这面墙每平方米需要0.15千克涂料,一共要用多少千克涂料?

(1)先指导学生理解题意,让学生明确解题的关键是:应先算这面墙的面积(即:应先算出题中组合图形的面积),再根据乘法的意义算出一共要用多少千克涂料。

(2)让学生独立解决问题,并与同桌交流算法,再此基础上教师组织学生进行全班交流。

3、学校要油漆60扇教室的门的外面(门的形状如图,单位:米)

(1)需要油漆的面积一共是多少?

(2)如果油漆每平方米需要花费5元,那么学校共要花费多少元?

师:你们肯定比我行,让学生独立计算。(师故意示弱造势)

师:谁可以把自己的想法告诉大家?学生说出解题思路。

四、课堂总结。

师:这节课你有什么收获?(生回答)

师:大家真了不起,经过积极思考,利用已经学过的知识解决了遇到的新问题,还想出了这么多巧妙的方法。

一键复制全文保存为WORD
相关文章