高中上册正弦定理数学说课稿【精选21篇】

作为一位无私奉献的人民教师,通常会被要求编写说课稿,说课稿有助于教学取得成功、提高教学质量。那么写说课稿需要注意哪些问题呢?

《正弦定理》说课稿 1

大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计

一、教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的'联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:已知两边和其中一边的对角解三角形时判断解的个数。

二、教法

根据教材的内容和编排的特�

三、学法

指导学生掌握“观察――猜想――证明――应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四、教学过程

(一)创设情境(3分钟)

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)猜想―推理―证明(15分钟)

激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。 提问:那结论对任意三角形都适用吗?(让学生分小组讨论,并得出猜想)

在三角形中,角与所对的边满足关系

注意:1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

(三)总结--应用(3分钟)

1.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

2.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(四)讲解例题(8分钟)

1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中

一边的对角时解三角形的各种情形。完了把时间交给学生。

(五)课堂练习(8分钟)

1.在△ABC中,已知下列条件,解三角形。 (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列条件,解三角形。 (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(六)小结反思(3分钟)

1.它表述了三角形的边与对角的正弦值的关系。

2.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

3.会用向量作为数形结合的工具,将几何问题转化为代数问题。

正弦定理余弦定理说课稿 2

"余弦定理"是人教a版数学第必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是"正弦定理、余弦定理"教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于"定理教学课".

这堂课并不是将余弦定理全盘呈现给学生,而是从实际问题的求解困难,造成学生认知上的冲突,从而激发学生探索新知识的强烈欲望。另外,本节与教材其他课文的共

性是都要掌握定理内容及证明方法,会解决相关的问题。

下面说一说我的教学思路。

通过对教材的分析钻研制定了教学目的:

1.掌握余弦定理的内容及证明余弦定理的向量方法,会运用余弦定理解决两类基本的解三角形问题。

2.培养学生在方程思想指导下解三角形问题的运算能力。

3.培养学生合情推理探索数学规律的思维能力。

4.通过三角函数、余弦定理、向量的数量积等知识的联系,来理解事物普遍联系与辩证统一。

余弦定理揭示了任意三角形边角之间的客观规律,是解三角形的重要工具。余弦定理是初中学习的勾股定理的拓广,也是前阶段学习的三角函数知识与平面向量知识在三角形中的交汇应用。本节课的重点内容是余弦定理的发现和证明过程及基本应用,其中发现余弦定理的过程是检验和训练学生思维品质的重要素材。

余弦定理是勾股定理的推广形式,勾股定理是余弦定理的特殊情形,勾股定理在余弦定理的发现和证明过程中,起到奠基作用,因此分析勾股定理的结构特征是突破发现余弦定理这个难点的关键。

在确定教学方法之前,首先分析一下学生:我所教的是课改一年级的学生。他们的基础比正常高中的学生要差许多,拿其中一班学生来说:数学入学成绩及格的占50%

左右,相对来说教材难度较大,要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。

根据教材和学生实际,本节主要采用"启发式教学"、"讲授法"、"演示法",并采用电教手段使用多媒体辅助教学。

1.启发式教学:

利用一个工程问题创设情景,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。

2. 练习法:通过练习题的训练,让学生从多角度对所学定理进行认识,反复的练习,体现学生的主体作用。

3. 讲授法:充分发挥主导作用,引导学生学习。

4. 演示法:利用动画、图片,激发学生的学习兴趣,调动学生积极性。

这节课准备的器材有:计算机、大屏幕。

1. 复习正弦定理(2分钟):安排一名同学上黑板写正弦定理。

2. 设计精彩的新课导入(5分钟):利用大屏幕演示一座山,先展示,后出现b、c,

再连成虚线,并闪动几下,闪动边ab、ac几下,再闪动角a的阴影几下,可测得

ac、ab的长及∠a大小。

问你知道工程技术人员是怎样计算出来的吗?

一下子,学生的注意力全被调动起来,学生一定会采用正弦定理,但很快发现

∠b、∠c不能确定,陷入困境当中。

3. 探索研究,合理猜想。

当ab=c,ac=b一定,∠a变化时,a可 -2ab的系数-1、0、1与a=0、∏/2、∏之间存在对应关系。

教师指导学生由特殊到一般,经比较分析特例,概括出余弦定理,这种促使学生主动参与知识形成过程的教学方法,既符合学生学习的认知规律,又突出了学生的主体地位。"授人以鱼",不如"授人以渔",引导学生发现问题,探究知识,建构知识,对学生

来说,既是对数学研究活动的一种体验,又是掌握一种终身受用的治学方法。

4. 证明猜想,建构新知

接下来就是水到渠成,现在余弦定理还需要进一步证明,要符合数学的严密逻辑推理,锻炼学生自己写出定理证明的已知条件和结论,请一位学生到黑板写出来,并请同学们自己进行证明。教师在课中进行指导,针对出现的问题,结合大屏幕打出的正

确过程进行讲解。

在大屏幕打出余弦定理,为了促进学生记忆,在黑板上让学生背着写出定理,也是当

堂巩固定理的方法。

5. 操作演练,巩固提高

定理的应用是本节的重点之一。我分析题目,请同学们进行解答,在难点处进行点拨。以第二题为例,在求a的过程中学生会产生分歧,一部分采用正弦定理,一部分采用余弦定理,其实两种做法都可得到正确答案,形成解法一和解法二。在这道例题中进行发散思维的训练,(在上例中,能否既不使用余弦定理,也不使用正弦定理,

求出∠a?)

启发一:a视为b 与c两点间的距离,利用b、c的坐标构造含a的等式

启发二:利用平移,用两种方法求出c’点的坐标,构造等式。使学生的思维活跃,渐入新的境界。每次启发,或是针对一般原则的提示,或是在学生出现思维盲点

处点拨,或是学生"简单一跳未摘到果子"时的及时提醒。

6. 课堂小结:

告诉学生余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理

的特例。

7. 布置作业:书面作业 3道题

作业中注重余弦定理的应用,重点培养解决问题的能力。

以上是我的一点粗浅的认识,如有不对之处,请老师评委们给与指教,我的课说完了,谢谢各位。

《正弦定理》的说课稿 3

教学目标

【知识与技能】

掌握正弦定理及推导过程,会利用正弦定理证明简单三角形以及求解三角形边角问题。

【过程与方法】

通过三角函数,向量数量积等多处知识间联系来体现事物之间普遍联系与辩证统一。

【情感态度与价值观】

问题分析解决过程中,体会数学的严谨性。

教学重难点

【重点】

正弦定理证明及应用。

【难点】

正弦定理的'证明,正弦定理在解三角形应用思路。

教学过程

(一)导入新课

提出问题:在初中已经学习过解直角三角形,已会根据直角三角形中已知的边与角,求出未知的边与角,直角三角形存在如下边角关系,在一个三角形中各边和他所对角的正弦之比相等(画xxx展示直角三角形xxx形,引导得出正弦定理公式形式),带领学生猜测对任意三角形都成立?这就是这一节课主要研究的课题。

板书课题,正弦定理。

(二)生成新知

提问:验证任意三角形成立?还需要验证哪些三角形结论成立?

预设学生回答锐角三角形,钝角三角形。

提问:如何验证锐角三角形,钝角三角形上述结论成立?能不能转化成直角三角形研究边角关系

思考:尝试用其他方法证明正弦定理。

提问:观察正弦定理的结构,这个式子包含了哪些等式,每个等式有几个量?

学生小组讨论总结,三个等式,每个式子有四个量,如果知道其中三个可以求出第四个。

(三)巩固提高

课本例一,例二,思考利用正弦定理,可以解决斜三角形哪些类型的问题。

小组讨论,师生共同总结正弦定理解决的两类斜三角形问题。

(四)小结作业

小结:提问学生本节课有什么收获,阐述正弦定理公式,及解决的问题。

作业:思考尝试用其他方法证明正弦定理。

《正弦定理》的说课稿 4

大家好,今天我说课的题目是《正弦定理》。

新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材

教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。在正式内容开始之前,我要先谈一谈对教材的理解。

《正弦定理》是人教A版必修5第一章第一节的内容,其主要内容是正弦定理及其应用。此前学习了三角函数的相关知识,且积累很多的证明、推导的经验,为本节课的学习都起到了一定的铺垫作用。本节课的学习,也为以后学习和解决生活中的一些问题提供帮助。因此本节的学习有着极其重要的地位。

二、说学情

合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。

这一阶段的学生已经具备了一定的分析问题、解决问题的能力,且在知识方面也有了一定的积累。所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。

三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能

能证明正弦定理,并能利用正弦定理解决实际问题。

(二)过程与方法

通过正弦定理的'推导过程,提高分析问题、解决问题的能力。

(三)情感、态度与价值观

在正弦定理的推导过程中,感受数学的严谨,提升对数学的兴趣。

四、说教学重难点

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点为:正弦定理。难点:正弦定理的证明。

五、说教法和学法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、启发法、练习法、小组合作、自主探究等教学方法。

六、说教学过程

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。

(一)导入新课

首先是导入环节,我将采用温故知新的导入方式。

复习初中学习的任意三角形中的边和角存在什么样的关系。在学生回顾之后,再提问:能否得到这个边、角关系准确量化的表示?引出本节课学习的内容——正弦定理。

通过温故知新的导入方式,能为本节课的后续的教学做好铺垫。

(二)讲解新知

接下来是新课讲授环节,我将分为四部分,分别为在直角三角形中推导正弦定理、在锐角三角形中推导正弦定理、在钝角三角形中推导正弦定理以及正弦定理的应用。

素的过程叫做解三角形。

在介绍完正弦定理后,接下来介绍正弦定理的应用。通过提问:我们利用正弦定理可以解决一些怎样的解三角形问题呢?总结:如果已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出三角形的另两边;如果已知三角形的任意两边与其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角。

整节课,本着学生为主体,教师为主导的设计理念,结合教学内容和学生的特点,利用学生已有的知识经验,采用层次性的问题,一步步引导学生思考交流、发现知识。并且在整个过程中,讲授法、引导法、合作探究等多种教学方法的使用,不但让学生学会知识,也培养学生的学习能力。通过这样的设计,提升学生学习数学的信心,提高学习数学的兴趣。

(三)课堂练习

正弦定理说课稿 5

1正弦定理           2证明方法:            3 利用正弦定理能够解决两类问题:

(1)平面几何法         (1)已知两角和一边

(2)向量法             (2)已知两边和其中一边的对角

例题

板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。

《正弦定理》的说课稿 6

《正弦定理》的说课稿

大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。

一、教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的`兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

二、教法

根据教材的内容和编排的特� 突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

正弦定理说课稿 7

尊敬的各位专家、评委:

大家好!

我是**县**中学数学教师fwsi,我今天说课的题目是:人教A版普通高中课程标准实验教科书 数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。

一、教材分析

"解三角形"既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课"正弦定理",作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从"实际问题"抽象成"数学问题"的建模过程中,体验 "观察——猜想——证明——应用"这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和"用数学"的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对"一些重要的数学思想和数学方法"的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用"等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立"数学与我有关,数学是有用的,我要用数学,我能用数学"的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用"问题教学法",即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。

通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

(四)强化理解,简单应用

下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。

让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

问题7:(教材例题1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。

(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

强化练习

让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。

例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

(五)小结归纳,深化拓展

1、正弦定理

2、正弦定理的证明方法

3、正弦定理的应用

4、涉及的数学思想和方法。

师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

(六)布置作业,巩固提高

1、教材10页习题1.1A组第1题。

2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。

证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC

对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

(七)板书设计:(略)

《正弦定理》的说课稿 8

我今天说课的题目是:人教A版普通高中课程标准实验教科书数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。

一、教材分析

"解三角形"既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课"正弦定理",作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从"实际问题"抽象成"数学问题"的建模过程中,体验"观察——猜想——证明——应用"这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和"用数学"的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对"一些重要的数学思想和数学方法"的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用"等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立"数学与我有关,数学是有用的,我要用数学,我能用数学"的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用"问题教学法",即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题,其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA=,sinB=,sinC=,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。

通过本段内容的讲解,渗透一些数学史的'内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

(四)强化理解,简单应用

下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。

让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢?我们先小试牛刀,来一个简单的问题:

问题7:(教材例题1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。

(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

强化练习

让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。

例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

(五)小结归纳,深化拓展

1、正弦定理

2、正弦定理的证明方法

3、正弦定理的应用

4、涉及的数学思想和方法。

师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

(六)布置作业,巩固提高

1、教材10页习题1、1A组第1题。

2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。

证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB,c=2RsinC

对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

(七)板书设计:(略)

高中数学《正弦定理》说课稿 9

尊敬的各位专家、评委:

大家好!

我是**县**中学数学教师xxx,我今天说课的题目是:人教A版普通高中课程标准实验教科书 数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。

一、教材分析

”解三角形“既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课”正弦定理“,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从”实际问题“抽象成”数学问题“的建模过程中,体验 ”观察——猜想——证明——应用“这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和”用数学“的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对”一些重要的数学思想和数学方法“的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940—998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973—1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在10以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的。老师了。当然,老师的希望能否变成现实,就要看大家的了。

通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

(四)强化理解,简单应用

下面请大家看我们的教材2—3页到例题1上边,并自学解三角形定义。

让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

问题7:(教材例题1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。

(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

强化练习

让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。

例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

(五)小结归纳,深化拓展

1、正弦定理

2、正弦定理的证明方法

3、正弦定理的应用

4、涉及的数学思想和方法。

师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

(六)布置作业,巩固提高

1、教材10页习题1。1A组第1题。

2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。

证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC

对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

(七)板书设计:(略)

正弦定理说课稿怎么写 10

正弦定理说课稿怎么写

尊敬的各位专家、评委:

大家好!

一、教材分析

“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验“观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题,其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在rt⊿abc中sina=,sinb= ,sinc= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的rt⊿abc不小心写成了锐角

⊿abc,其它没有变,你说这个结论还成立吗?

[设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿abc改为角钝角⊿abc,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

[设计说明]放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的。老师了。当然,老师的希望能否变成现实,就要看大家的了。

[设计说明] 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

(四)强化理解,简单应用

下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。

[设计说明]让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

问题7:(教材例题1)⊿abc中,已知a=30,b=75,a=40cm,解三角形。

(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

[设计说明] 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

强化练习

让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

问题8:(教材例题2)在⊿abc中a=20cm,b=28cm,a=30,解三角形。

[设计说明]例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

(五)小结归纳,深化拓展

1、正弦定理

2、正弦定理的证明方法

3、正弦定理的应用

4、涉及的数学思想和方法。

[设计说明] 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

(六)布置作业,巩固提高

1、教材10页习题1.1a组第1题。

2、学有余力的同学探究10页b组第1题,体会正弦定理的其他证明方法。

证明:设三角形外接圆的半径是r,则a=2rsina,b=2rsinb, c=2rsinc

[设计说明] 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

高中高一上册数学说课稿 11

数学教案说课稿1:集合的含义与表示

一。教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,

一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合

论及其所反映的数学思想,在越来越广泛的领域种得到应用。

二。目标分析:

教学重点。难点

重点:集合的含义与表示方法。 难点:表示法的恰当选择。

教学目标

l.知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性。互异性。无序性;

(4)会用集合语言表示有关数学对象;

2. 过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

(2)让学生归纳整理本节所学知识。

3. 情感。态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性。

三。 教法分析

1. 教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。2. 教学手段:在教学中使用投影仪来辅助教学。

四。过程分析

(一)创设情景,揭示课题

1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?

引导学生互相交流。 与此同时,教师对学生的活动给予评价。

2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征

由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

(二)研探新知,建构概念

1.教师利用多媒体设备向学生投影出下面7个实例:

(1)1—20以内的所有质数;(2)我国古代的四大发明;

(3)所有的安理会常任理事国; (4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点;

(7)国兴中学2004年9月入学的高一学生的全体。

2.教师组织学生分组讨论:这7个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素。

4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示。

设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

(三)质疑答辩,发展思维

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性。互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;(2)我国的小河流。 让学生充分发表自己的建解。

3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。

4.教师提出问题,让学生思考

b是 (1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,

高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。

如果a是集合A的元素,就说a属于集合A,记作a?A.

如果a不是集合A的元素,就说a不属于集合A,记作a?A.

(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。

(3)让学生完成教材第6页练习第1题。

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1.1A组第1题。

6.教师引导学生阅读教材中的相关内容,并思考。讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言。列举法和描述法在表示集合时,各自的特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合A?{x?N|1?x?8}

(3)试选择适当的方法表示下列集合:教材第6页练习第2题。

设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

(五)归纳小结,布置作业

小结:在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习了哪些知识内容? 2.�

作业: 1.课后书面作业:第13页习题1.1A组第4题。

2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种

呢?如何表示?请同学们通过预习教材。

五。板书分析

数学教案说课稿2:《函数及其表示》

尊敬的各位专家、评委:

下午好!

我的抽签序号是____,今天我说课的课题是人教A版必修1第一章第二节《函数及其表示》.

我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

一、教材分析

(一)地位与作用

函数是中学数学中最重要的基本概念之一,函数的学习大致可分为三个阶段:第一阶段在义务教育阶段,学习了函数的描述性概念,接触了正比例函数,凡比例函数,一次函数,二次函数等;本章学习的函数的概念、基本性质与后续将要学习的基本初等函数(i)和(iI)是函数学习的第二阶段,是对函数概念的再认识阶段;第三阶段在选修系列得导数及其应用的学习,使函数学习的进一步深化和提高。因此函数及其表述这一节在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在知识方面,更重要的是在函数的思想、方法方面,将会让学生在今后的学习、工作和生活中受益无穷。

本小节介绍了函数概念,及表示方法。我将本小节分为两课时,第一课时完成函数概念的教学,第二课时完成函数图象的教学。这里我主要谈谈函数概念的教学。

函数的概念部分用三个实际例子设计数学情境,让学生探寻变量和变量的对应关系,结合初中学习的函数理论,在集合论的基础上,促使学生建构出函数的概念,体验结合旧知识,探索新知识,研究新问题的快乐。

(二)学情分析

(1)在初中,学生已经学习过函数的概念,并且知道函数是变量之间的相互依赖关系。

(2)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(3) 学生层次参次不齐,个体差异比较明显。

二、目标分析

根据《函数的概念》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

1进一步体会函数是描述变量之间的依赖关系的重要数学模型,○能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用

2了解构成函数的要素,○理解函数定义域和值域的概念,并会求一些简单函数的定义域。 ③由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。

(2)过程与方法

引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构函数概念;体验结合旧知识探索新知识,研究新问题的快乐

(3)情感态度与价值观

通过对函数概念形成的探究过程培养学生发现问题,探索问题,不断超越的创新品质

(二)重点难点

重点:体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念 难点:函数概念及符号y=f(x)的理解

三、教法、学法分析

(一)教法

在本课的教学过程中采用设问、引导、启发、发现的方法,并灵活应用多媒体手段,以学生为主体,创设和谐、愉悦互动的环境,组织学生自主、合作的探究活动,引导学生探索新知识。

(二)学法

首先,学生通过研究教师在课堂上提供的实例和提出的问题,展开分析和讨论,发表个人的见解,接下来采用学生评价学生的方法提炼问题的中心思想。其次,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。最后,学生在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

四、教学过程分析

(一)教学过程设计

(1)创设情境,提出问题。

引入课本的三个具体实例,引发学生的探索

对于例1:可以分别让学生计算t=1,2,5,10时,炮弹距离地面多高,同时关注t和h的变化范围,引导学生体会有解析式刻画变量之间的对应关系,启发学生用集合与对应的语言描述函数关系:

对于例2:可以让学生观察图像,找出臭氧空洞面积的年份或者臭氧空洞面积大约为2000万平方千米所对应的年份,引导学生体会图像对刻画变量之间的对应关系,并关注t和s的范围。启发学生再次利用集合与对应的语言描述函数关系:

对于例3:恩格尔系数与时间之间的关系是否和前两个例题的两个变量之间的关系相似?如何用集合和对应的语言进行描述

(2)引导探究,建构概念。

(1)进一步提问:“你觉得这三个问题有没有共同的特点呢?”由于这个问题比较开放,所以学生,容易形成数学以外的或者不在本课研究范围的观点。首先采用小组合作探究的形式获得共识,并由各小组派代表发表探究成果,接着再让其它学生根据老师的叙述,评论、提炼出重点。作为教学的引导者,我需要及时对学生的解答进行指引。最终得出函数的概念

(2)教师概括总结学生的探究成果,形成函数概念,并进一步解释函数概念

I、函数的三要素

Ii函数富豪的

为深化学生对函数概念的理解 ,还可以用函数概念解析已经学过的一次函数,二次函数,妇女比例函数等,可以设计如下表格

函数 一次函数 二次函数 反比例函数

对应关系

定义域

值域

由学生填写

(3)自我尝试,初步应用。

例1、判断下列图像是否为函数图像。考察学生对函数定义的理解

例2、采用课本例1,并增加一问若f(x)=-1,求x

目的是引导学生探究求函数定义域的基本方法;对于用解析式表示的函数会用解析式求

函数值或有函数值求子变量的值,进一步体会函数级号的含义,区分f(-1),f(a),f(x) 例3.采用课本例2

目的:通过判断函数的相等认识到函数的整体性,并指出在三要素中,由于值域是由定义域和对应法则决定的,所以只要两个函数的定义域和对应关系相同,两个函数就相等;进一步加深函数概念的理解

(4)当堂训练,巩固深化。

通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

采用课后练习1、2、3

(5)小结归纳,回顾反思。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

(二)作业设计

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成。

我设计了以下作业:

(1)必做题:课后习题A 1(2,3),2、5、6

(2)选做题:课后习题B 1、2

(三)板书设计

板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

五、评价分析

学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

谢谢!

数学教案说课稿3:函数的奇偶性

尊敬的各位专家评委、老师们:上午好!

我是12号说课教师。今天我说课的题目是函数的奇偶性。我将从教材分析、目标确立、教法和学法的确定、教学程序设计、过程分析五个方面对本节课进行说明。

一 教材分析:

本节课是高中数学人教B版必修一2.1.4的内容,是学生在学习了函数、轴对称和中心对称图形的基础上来学习的,函数的奇偶性是考察函数性质时的又一个重要方面。教材从具体到抽象,从感性到理性,循序渐进地引导学生进入数学领域进行观察、归纳,形成函数奇偶性概念。同时渗透数形结合,从特殊到一般的数学思想。

二、确立教学目标

(1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断简单函数的奇偶性。

(2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊到一般的数学思想方法。

(3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。 .教学重点:函数奇偶性概念的形成

教学难点:函数奇偶性的判断

三、说教法和学法

1、教法

根据本节教材内容和编排特� 教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

2、学法 让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。

四、教学程序设计:

为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:

(一)设疑导入,观图激趣。(二)指导观察,形成概念。(三)学生探索、发展思维。

(四)知识应用,巩固提高。(五)归纳小结,布置作业。

五、说课过程:

(一)设疑导入、观图激趣。

1、用多媒体展示一组图片,让学生感受生活中的美:对称美,再让学生举例。

通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为新知作好铺垫。

(二)指导观察、形成概念。 数学中对称的形式也很多,这节课我们就同学们谈到的与轴对称的函数展开研究。 先思考一个问题:哪些函数的图象关于轴对称?试举例。

然后以函数f(x)=x2和f(x)=︱x︱为例,学生动手作出图像,让学生回想,初中时怎样判断图象关于

轴对称呢? 此时提出研究方向: 今天我们将从数值角度研究图象的这种

特征,体现在自变量与函数值之间有何规律?

引导学生先把它们具体化,再用数学符号表示。借助课件演示(令

得出等式 比较

, 再令

,得到

) 让学生发现两个函数的对称性反应到函数值上具有的特性:,然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。最后让学生用完整的语言给

出偶函数定义,不准确的地方教师予以提示或调整。

(1) 偶函数的定义:(板书)

设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D 且

f(-x)=f(x),那么f(x)就叫做偶函数。

接着提出新问题:

函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?然后多媒体展示两个学生非常熟悉的函数 f(x)?x和f(x)?1

x的图象让学生观察研究。

引导学生用类比的方法,得出结论,再鼓励学生给出奇函数的定义。

(2) 奇函数的定义(板书)

设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D 且

f(-x)= - f(x) ,那么f(x)就叫做奇函数。

(三) 学生探索、深化概念:

设计以下问题组织学生讨论思考回答

问题1:奇函数、偶函数的定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别?

问题2:—x与x在几何有何关系?具有奇偶性的函数的定义域有何特征?

问题3:如果一个函数是奇函数,且0在定义域内,f(0)??如果一个函数既是奇函数,又是偶函数,则f(x)有何特性?

通过对三个问题的探讨,引导学生认识以下几点:(多媒体显示)

问题4:结合函数f(x)?1

x的图像回答以下问题:

(1)对于任意一个奇函数f(x),图像上的点P(x, f(x))关于原点的对称点P’的坐标是什么?点P’是否也在函数f(x)的图像上?由此可得到怎样的结论?

(2)如果一个函数的图像是以坐标原点为对称中心的中心对称图形,能否判断它的奇偶性?

学生通过交流探索问题4可以把奇函数的性质总结出来,然后教师发动学生自己研究一下偶函数图像的性质(教师板书)

(四)、知识应用,巩固提高。

例1. 判断下列函数的奇偶性

(1)f(x)=x4 (2)f(x)=x5

(3) f(x)=x+1/x (4)f(x)=1/x2

选例1的第(1)小题板书来示范解题步骤,其他例题让几个学生板演,其余学生在下面完成。

例1设计意图是归纳出判断奇偶性的步骤:

(1) 先求定义域,看是否关于原点对称;

(2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x).

结合例1的答案,发动学生思考:一个函数奇偶性的可能情况有几种类型?(多媒体显示)

例1完成后,要求学生做练习,及时巩固,教师做好巡视指导

高中上册正弦定理数学说课稿【精选21篇】

下面来学习例2、例3

例2已知函数y=f(x)是偶函数,它在y轴右边的图象如下图,画出在y轴左边的图象。 (多媒体显示)

1例3 研究函数y?2 的性质并作出它的图像 x

课件演示例2,板书例3.

例2 例3主要让学生体会学习了函数的单调性后为研究函数的性质带来的方便。根据奇、偶函数图像的对称性,只研究函数在y轴一侧的图像和性质就可以知道在另一侧的图像和性质。

(五)归纳小结,布置作业。

从知识和方法两个方面让学生谈本节课的收获,并进行反思。

作业:层次一:教材第52页习题2-1A 6、7、8题 层次二:教材第53页习题2-1B2、3、4题 层次三:补充题:判断按下列函数的奇偶性:

通过分层作业使学生进一步巩固本节课所学内容,并为学有余力和学习兴趣浓厚的学生提供进一步学习的机会

以上是对本节课的一些思考,不妥之处,敬请各位专家评委批评指正。

数学教案说课稿4:指数函数

一、教材分析

1.《指数函数》在教材中的地位、作用和特点

《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

2.教学目标、重点和难点

通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。

(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

二、教法设计

由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

1.创设问题情景。按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

2.强化“指数函数”概念。引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

3.突出图象的作用。在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

教师活动:①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;②布置课后及拓展作业

学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。

设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。

5.板书设计

考虑到板书在教学过程中发挥的功能,本节课我设计了由三个板块构成的板书,板面分配比例为2:1:1,第一大板块包含了两部分,一是指数函数的定义,二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成。

五、教学评价

教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!

正弦定理说课稿 12

一教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

二教法

根据教材的内容和编排的特� 突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

三学法:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1、激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2、那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3、让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1、强调将猜想转化为定理,需要严格的理论证明。

2、鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3、提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4、思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1、让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2、正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3、运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1、例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2、例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

正弦定理说课稿 13

正弦定理说课稿

正弦定理说课稿

尊敬的各位专家、评委:

大家好!

一、教材分析

“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

[设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

[设计说明] 放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的。同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔—威发[940-998]首先发现与证明的。中亚细亚人阿尔比鲁尼[973-1048]给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在10以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。

[设计说明] 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

(四)强化理解,简单应用

下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。

[设计说明] 让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

问题7:(教材例题1)⊿ABC中,已知A=30º,B=75º,a=40cm,解三角形。

(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

[设计说明] 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

强化练习

让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30º,解三角形。

高中上册正弦定理数学说课稿 14

高中上册正弦定理数学说课稿

一 教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

二 教法

根据教材的内容和编排的特� 突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

三 学法:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四 教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的`问题。自己参与实实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形。

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列条件,解三角形。

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

五 板书设计

板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。

《正弦定理》的说课稿 15

一、教学目标:

掌握正弦定理的基本概念及其应用;

理解正弦定理在三角形中的作用;

掌握利用正弦定理解决实际问题的方法。

二、教学重点:

掌握正弦定理的基本概念及其应用;

理解正弦定理在三角形中的作用;

掌握利用正弦定理解决实际问题的方法。

三、教学难点:

掌握利用正弦定理解决实际问题的方法;

理解正弦定理在三角形中的作用。

四、教学方法:

讲授法;

示范法;

练习法。

五、教学过程:

导入(5分钟)

通过观察实物或图片,让学生回想起在三角形中哪些数学知识点。然后简单介绍正弦定理,引导学生理解正弦定理在三角形中的作用。

新知讲解(20分钟)

(1)什么是正弦定理?

正弦定理是指在任意三角形中,任意一边上的正弦值与另外两边的正弦值之比相等。具体表达式为:a/sin A=b/sin B=c/sin C。

(2)正弦定理的应用

利用正弦定理可以解决三角形的任意边的长度问题,包括已知一边、一角、一对相邻边的长度,求第三边的`长度;已知两边、一个角的正弦值和第三边的长度,求第二边的长度。

(3)正弦定理的证明

正弦定理的证明可以采用反证法。首先,根据余弦定理,我们可以得到以下方程:a^2=b^2+c^2-2bc*cos A。然后,我们可以根据反证法证明这个方程的两边与sin A成比例,即a/sin A=b/sin B=c/sin C。

练习(20分钟)

解答学生的练习题(20分钟)

老师应该针对学生的错误答案进行解答,并给予正确的指导和纠正。对于学生做对的题目,可以给予表扬和鼓励。同时,也要引导学生自己总结归纳,以便在今后的学习中能够更好地应用正弦定理。

归纳总结(10分钟)

老师可以让学生简单总结一下今天的课程内容,以便学生更好地理解和掌握正弦定理。可以强调正弦定理的应用场景和方法,并鼓励学生在今后的学习和生活中多多应用。

布置作业(5分钟)

老师可以根据今天的课程内容布置相应的作业,让学生在家中进行练习和巩固。同时,也可以让学生回家后和家长一起讨论今天所学的内容,以便更好地加深理解。

结束语(5分钟)

老师可以简单总结一下今天的课程内容,并强调正弦定理在解决实际问题中的重要性和应用价值。同时,也可以鼓励学生在今后的学习中多多应用正弦定理,提高自己的数学素养和能力。

《正弦定理、余弦定理》说课稿 16

一、教材分析

正弦定理是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边长与角度之间的数量关系,提出两个实际问题,并指出解决问题的关键在于研究三角形中的边、角关系,从而引导学生产生探索愿望,激发学生学习的兴趣。在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的'问题:

(1)已知两角和一边,解三角形:

(2)已知两边和其中一边的对角,解三角形。

二、学情分析

本节授课对象是高一学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。高一学生对生产生活问题比较感兴趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。

根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。

三、教学目标

1.知识与技能:

(1)引导学生发现正弦定理的内容,探索证明正弦定理的方法;

(2)简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题

2.过程与方法:

通过对定理的探究,培养学生发现数学规律的思维方法与能力;通过对定理的证明和应用,培养学生独立解决问题的能力和体会分类讨论和数形结合的思想方法。

3.情感、态度与价值观:

(1)通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识;

(2)通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值,不断提高自身的文化修养。

四、教学重点、难点

教学重点: 1.正弦定理的推导。 2.正弦定理的运用

教学难点:1.正弦定理的推导。 2.正弦定理的运用。

五、学法与教法

学法与教学用具

学法:开展“动脑想、严格证、多交流、勤设问”的研讨式学习方法,逐渐培 养学生“会观察”、“会类比”、“会分析”、“会论证”的能力,

教学用具:电脑、多媒体。

教法:运用“发现问题—自主探究—尝试指导—合作交流”的教学模式

整堂课围绕“一切为了学生发展”的教学原则,突出:①动——师生互动、共同探索;②导——教师指导、循序渐进。

(1)新课引入——提出问题, 激发学生的求知欲。

(2)掌握正弦定理的推导证明——分类讨论,数形结合,动脑思考,由特殊到一般,组织学生自主探索,获得正弦定理及证明过程。

(3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识。

(4)巩固练习——深化对正弦定理的理解,并结合辽宁数学高考理科17题文科18题,巩固新知。

正弦定理说课稿 17

尊敬的各位专家、评委:

大家好!

我是xx县xx中学数学教师xx,我今天说课的题目是:人教A版普通高中课程标准实验教科书 数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。

一、教材分析

"解三角形"既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课"正弦定理",作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从"实际问题"抽象成"数学问题"的建模过程中,体验 "观察——猜想——证明——应用"这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和"用数学"的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对"一些重要的数学思想和数学方法"的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用"等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立"数学与我有关,数学是有用的,我要用数学,我能用数学"的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用"问题教学法",即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。

引用教材本章引言,制造知识与问题的'冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。

放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。

问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940—998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973—1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。

通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

(四)强化理解,简单应用

下面请大家看我们的教材2—3页到例题1上边,并自学解三角形定义。

让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

问题7:(教材例题1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。

(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

强化练习

让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。

例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

(五)小结归纳,深化拓展

1、正弦定理。

2、正弦定理的证明方法。

3、正弦定理的应用。

4、涉及的数学思想和方法。

师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

(六)布置作业,巩固提高

1、教材10页习题1、1A组第1题。

2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。

证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC。

对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

《正弦定理》的说课稿 18

一、说教材分析

1、教材地位和作用

在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4,学生也学习了三角函数、平面向量等内容。这些为学生学习正弦定理提供了坚实的基础。正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。依据教材的上述地位和作用,我确定如下教学目标和重难点

2、教学目标

(1)知识目标:

①引导学生发现正弦定理的内容,探索证明正弦定理的方法;

②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。

(2)能力目标:

①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。

②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。

(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度

3、教学的重﹑难点

教学重点:

正弦定理的内容,正弦定理的证明及基本应用;

教学难点:正弦定理的探索及证明;

教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段

二、说教学方法与手段

1、教学方法

教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。

2、学法指导

学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。

学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。

3、教学手段

利用多媒体展示图片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。为了提高课堂效率,便于学生动手练习,我把本节课的例题、课堂练习制作成一张习题纸,课前发给学生。

下面我讲解如何运用上述教学方法和手段开展教学过程

三、说教学过程设计

教学流程:

引出课题

引出新知

归纳方法

巩固新知

布置作业

四、说总结分析:

现代教育心理学的研究认为,有效的。`性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了:

㈠在学生已有知识结构和新性质概念间寻找“最近发展区”。

㈡引导学生通过同化,顺应掌握新概念。

㈢设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程”的新天地。

我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合﹑学用结合”原则。希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用。

设计意图:我的板书设计的指导原则:简明直观,重点突出。本节课的板书教学重点放在黑板的正中间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。

正弦定理余弦定理说课稿 19

1.地位及作用

"余弦定理"是人教a版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。

2.教学重、难点

重点:余弦定理的证明过程和定理的简单应用。

难点:利用向量的数量积证余弦定理的思路。

知识目标:能推导余弦定理及其推论,能运用余弦定理解已知"边,角,边"和"边,边,边"两类三角形。

能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。

情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

数学课堂上首先要重视知识的发生过程,既能展现知识的获取,又能暴露解决问题的思维。在本节教学中,我将遵循"提出问题、分析问题、解决问题 "的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历"现实问题转化为数学问题"的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

帮助学生从平面几何、三角函数、向量知识等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。你能够有更好的具体的量化方法吗?问题可转化为已知三角形两边长和夹角求第三边的问题,即:在 中已知ac=b,ab=c和a,求a.

学生对向量知识可能遗忘,注意复习;在利用数量积时,角度可能出现错误,出现不同的表示形式,让学生从错误中发现问题,巩固向量知识,明确向量工具的作用。同时,让学生明确数学中的转化思想:化未知为已知。将实际问题转化成数学问题,引导学生分析问题。在 中已知a=5,b=7,c=8,求b.

学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。

让学生观察推论的特征,讨论该推论有什么用。

正弦定理说课稿 20

一、教材分析

1、教材地位和作用

在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4 ,学生也学习了三角函数、平面向量等内容。这些为学生学习正弦定理提供了坚实的基础。正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。 依据教材的上述地位和作用,我确定如下教学目标和重难点。

2、教学目标

(1)知识目标:

①引导学生发现正弦定理的内容,探索证明正弦定理的方法;

②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。

(2)能力目标:

①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。

②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。

(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。

3、教学的重﹑难点

教学重点:正弦定理的内容,正弦定理的证明及基本应用; 教学难点:正弦定理的探索及证明;

教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段。

二、教学方法与手段

1、教学方法

教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。

2、学法指导

学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。

学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。

3、教学手段

利用多媒体展示图片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。为了提高课堂效率,便于学生动手练习,我把本节课的例题、课堂练习制作成一张习题纸,课前发给学生。

下面我讲解如何运用上述教学方法和手段开展教学过程

三、总结分析:

现代教育心理学的研究认为,有效的性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了: ㈠在学生已有知识结构和新性质概念间寻找“最近发展区”. ㈡引导学生通过同化,顺应掌握新概念。

㈢设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程” 的新天地。

我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合﹑学用结合”原则。希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用。

设计意图:我的板书设计的指导原则:简明直观,重点突出。本节课的板书教学重点放在黑板的正中间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。

谢谢!

《正弦定理》说课稿 21

一、说教材分析

“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察――猜想――证明――应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

二、说学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、说教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察――猜想――证明――应用“等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立”数学与我有关,数学是有用的,我要用数学,我能用数学“的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、说教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用”问题教学法“,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、说教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在RtSABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的RtSABC不小心写成了锐角SABC,其它没有变,你说这个结论还成立吗?

此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角SABC改为角钝角SABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)

放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的'同学有个参考,不至于闲呆着浪费时间。

问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)

教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发z940―998{首先发现与证明的。中亚细亚人阿尔比鲁尼z973―1048{给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在10以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。

通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。

(四)强化理解,简单应用

下面请大家看我们的教材2―3页到例题1上边,并自学解三角形定义。

让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。

我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:

问题7:(教材例题1)SABC中,已知A=30?,B=75?,a=40cm,解三角形。

(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)

充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。

强化练习

让全体同学限时完成教材4页练习第一题,找两位同学上黑板。

问题8:(教材例题2)在SABC中a=20cm,b=28cm,A=30?,解三角形。

例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》

(五)小结归纳,深化拓展

1、正弦定理

2、正弦定理的证明方法

3、正弦定理的应用

4、涉及的数学思想和方法。

师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。

(六)布置作业,巩固提高

1、教材10页习题1、1A组第1题。

2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。

证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC

对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。

(七)板书设计:

(略)

一键复制全文保存为WORD
相关文章